def convert_blockvisibility_to_visibility(vis: BlockVisibility) -> Visibility: """ Convert the BlockVisibility data with no coalescence :param vis: BlockVisibility to be converted :return: Visibility with cindex and blockvis filled in """ assert isinstance( vis, BlockVisibility), "vis is not a BlockVisibility: %r" % vis cvis, cuvw, cwts, cimaging_wts, ctime, cfrequency, cchannel_bandwidth, ca1, ca2, cintegration_time, cindex \ = convert_blocks(vis.data['vis'], vis.data['uvw'], vis.data['weight'], vis.data['imaging_weight'], vis.time, vis.integration_time, vis.frequency, vis.channel_bandwidth) converted_vis = Visibility(uvw=cuvw, time=ctime, frequency=cfrequency, channel_bandwidth=cchannel_bandwidth, phasecentre=vis.phasecentre, antenna1=ca1, antenna2=ca2, vis=cvis, weight=cwts, imaging_weight=cimaging_wts, configuration=vis.configuration, integration_time=cintegration_time, polarisation_frame=vis.polarisation_frame, cindex=cindex, blockvis=vis, meta=vis.meta) log.debug('convert_visibility: Original %s, converted %s' % (vis_summary(vis), vis_summary(converted_vis))) return converted_vis
def coalesce_visibility(vis: BlockVisibility, **kwargs) -> Visibility: """ Coalesce the BlockVisibility data_models. The output format is a Visibility, as needed for imaging Coalesce by baseline-dependent averaging (optional). The number of integrations averaged goes as the ratio of the maximum possible baseline length to that for this baseline. This number can be scaled by coalescence_factor and limited by max_coalescence. When faceting, the coalescence factors should be roughly the same as the number of facets on one axis. If coalescence_factor=0.0 then just a format conversion is done :param vis: BlockVisibility to be coalesced :return: Coalesced visibility with cindex and blockvis filled in """ assert isinstance( vis, BlockVisibility), "vis is not a BlockVisibility: %r" % vis time_coal = get_parameter(kwargs, 'time_coal', 0.0) max_time_coal = get_parameter(kwargs, 'max_time_coal', 100) frequency_coal = get_parameter(kwargs, 'frequency_coal', 0.0) max_frequency_coal = get_parameter(kwargs, 'max_frequency_coal', 100) if time_coal == 0.0 and frequency_coal == 0.0: return convert_blockvisibility_to_visibility((vis)) cvis, cuvw, cwts, cimwt, ctime, cfrequency, cchannel_bandwidth, ca1, ca2, cintegration_time, cindex \ = average_in_blocks(vis.data['vis'], vis.data['uvw'], vis.data['weight'], vis.data['imaging_weight'], vis.time, vis.integration_time, vis.frequency, vis.channel_bandwidth, time_coal, max_time_coal, frequency_coal, max_frequency_coal) coalesced_vis = Visibility(uvw=cuvw, time=ctime, frequency=cfrequency, channel_bandwidth=cchannel_bandwidth, phasecentre=vis.phasecentre, antenna1=ca1, antenna2=ca2, vis=cvis, weight=cwts, imaging_weight=cimwt, configuration=vis.configuration, integration_time=cintegration_time, polarisation_frame=vis.polarisation_frame, cindex=cindex, blockvis=vis, meta=vis.meta) log.debug( 'coalesce_visibility: Created new Visibility for coalesced data_models, coalescence factors (t,f) = (%.3f,%.3f)' % (time_coal, frequency_coal)) log.debug('coalesce_visibility: Maximum coalescence (t,f) = (%d, %d)' % (max_time_coal, max_frequency_coal)) log.debug('coalesce_visibility: Original %s, coalesced %s' % (vis_summary(vis), vis_summary(coalesced_vis))) return coalesced_vis
def decoalesce_visibility(vis: Visibility, **kwargs) -> BlockVisibility: """ Decoalesce the visibilities to the original values (opposite of coalesce_visibility) This relies upon the block vis and the index being part of the vis. Needs the index generated by coalesce_visibility :param vis: (Coalesced visibility) :return: BlockVisibility with vis and weight columns overwritten """ assert isinstance(vis, Visibility), "vis is not a Visibility: %r" % vis assert isinstance(vis.blockvis, BlockVisibility), "No blockvisibility in vis %r" % vis assert vis.cindex is not None, "No reverse index in Visibility %r" % vis log.debug( 'decoalesce_visibility: Created new Visibility for decoalesced data_models' ) decomp_vis = copy_visibility(vis.blockvis) vshape = decomp_vis.data['vis'].shape npol = vshape[-1] dvis = numpy.zeros(vshape, dtype='complex') assert numpy.max(vis.cindex) < dvis.size assert numpy.max( vis.cindex ) < vis.vis.shape[0], "Incorrect template used in decoalescing" for i in range(dvis.size // npol): decomp_vis.data['vis'].flat[i:i + npol] = vis.data['vis'][vis.cindex[i]] decomp_vis.data['flags'].flat[i:i + npol] = vis.data['flags'][vis.cindex[i]] decomp_vis.data['weight'].flat[i:i + npol] = vis.data['weight'][ vis.cindex[i]] decomp_vis.data['imaging_weight'].flat[i:i + npol] = vis.data[ 'imaging_weight'][vis.cindex[i]] log.debug('decoalesce_visibility: Coalesced %s, decoalesced %s' % (vis_summary(vis), vis_summary(decomp_vis))) return decomp_vis