pb = rsexecute.compute(pb_list[0], sync=True) del pb_list print("There are " + str(len(original_components)) + " components before pb application") pb = create_pb(pb, pbtype, use_local=False) if show: show_image(pb, cm='gray_r', title='%s Primary beam' % basename, components=original_components) plt.savefig('PB.png') plt.show(block=False) original_components = apply_beam_to_skycomponent( original_components, pb) print("There are " + str(len(original_components)) + " components after pb application") assert len(original_components ) > 0, "No components after applying primary beam" # Make one image per visibility future_model_list = [ rsexecute.execute(create_image_from_visibility)( fvis, npixel=npixel, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"))
beam = create_image_from_visibility(block_vis, npixel=npixel, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) beam = create_low_test_beam(beam, use_local=False) original_gleam_components = create_low_test_skycomponents_from_gleam( flux_limit=flux_limit, phasecentre=phasecentre, frequency=frequency, polarisation_frame=PolarisationFrame('stokesI'), radius=0.15) all_components = apply_beam_to_skycomponent(original_gleam_components, beam) all_components = filter_skycomponents_by_flux(all_components, flux_min=flux_limit) all_components = sorted(all_components, key=lambda comp: numpy.max(comp.flux), reverse=True) print("Number of components in simulation %d" % len(all_components)) screen = import_image_from_fits( rascil_path('data/models/test_mpc_screen.fits')) all_gaintables = create_gaintable_from_screen(block_vis, all_components, screen) all_skymodel = [ SkyModel(components=[all_components[i]], gaintable=all_gaintables[i]) for i, sm in enumerate(all_components)
def actualSetup(self, nsources=None, nvoronoi=None): # Set up the observation: 10 minutes at transit, with 10s integration. # Skip 5/6 points to avoid outstation redundancy nfreqwin = 1 ntimes = 3 self.rmax = 2500.0 dec = -40.0 * u.deg frequency = [1e8] channel_bandwidth = [0.1e8] times = numpy.linspace(-10.0, 10.0, ntimes) * numpy.pi / (3600.0 * 12.0) phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=dec, frame='icrs', equinox='J2000') low = create_named_configuration('LOWBD2', rmax=self.rmax) centre = numpy.mean(low.xyz, axis=0) distance = numpy.hypot(low.xyz[:, 0] - centre[0], low.xyz[:, 1] - centre[1], low.xyz[:, 2] - centre[2]) lowouter = low.data[distance > 1000.0][::6] lowcore = low.data[distance < 1000.0][::3] low.data = numpy.hstack((lowcore, lowouter)) blockvis = create_blockvisibility(low, times, frequency=frequency, channel_bandwidth=channel_bandwidth, weight=1.0, phasecentre=phasecentre, polarisation_frame=PolarisationFrame("stokesI"), zerow=True) vis = convert_blockvisibility_to_visibility(blockvis) advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02) cellsize = advice['cellsize'] npixel = 512 small_model = create_image_from_visibility( blockvis, npixel=512, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) vis.data['imaging_weight'][...] = vis.data['weight'][...] vis = weight_list_serial_workflow([vis], [small_model])[0] vis = taper_list_serial_workflow([vis], 3 * cellsize)[0] blockvis = convert_visibility_to_blockvisibility(vis) # ### Generate the model from the GLEAM catalog, including application of the primary beam. beam = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) beam = create_low_test_beam(beam, use_local=False) flux_limit = 0.5 original_gleam_components = create_low_test_skycomponents_from_gleam(flux_limit=flux_limit, phasecentre=phasecentre, frequency=frequency, polarisation_frame=PolarisationFrame( 'stokesI'), radius=0.15) all_components = apply_beam_to_skycomponent(original_gleam_components, beam) all_components = filter_skycomponents_by_flux(all_components, flux_min=flux_limit) voronoi_components = filter_skycomponents_by_flux(all_components, flux_min=1.5) def max_flux(elem): return numpy.max(elem.flux) voronoi_components = sorted(voronoi_components, key=max_flux, reverse=True) if nsources is not None: all_components = [all_components[0]] if nvoronoi is not None: voronoi_components = [voronoi_components[0]] self.screen = import_image_from_fits(rascil_data_path('models/test_mpc_screen.fits')) all_gaintables = create_gaintable_from_screen(blockvis, all_components, self.screen) gleam_skymodel_noniso = [SkyModel(components=[all_components[i]], gaintable=all_gaintables[i]) for i, sm in enumerate(all_components)] # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel, # returning a list of visibilities, one for each skymodel. We then sum these to obtain # the total predicted visibility. All images and skycomponents in the same skymodel # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable. self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(blockvis) ngroup = 8 future_vis = rsexecute.scatter(self.all_skymodel_noniso_vis) chunks = [gleam_skymodel_noniso[i:i + ngroup] for i in range(0, len(gleam_skymodel_noniso), ngroup)] for chunk in chunks: result = predict_skymodel_list_rsexecute_workflow(future_vis, chunk, context='2d', docal=True) work_vis = rsexecute.compute(result, sync=True) for w in work_vis: self.all_skymodel_noniso_vis.data['vis'] += w.data['vis'] assert numpy.max(numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0 self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(self.all_skymodel_noniso_vis) # ### Remove weaker of components that are too close (0.02 rad) idx, voronoi_components = remove_neighbouring_components(voronoi_components, 0.02) model = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency, nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre) # Use the gaintable for the brightest component as the starting gaintable all_gaintables[0].gain[...] = numpy.conjugate(all_gaintables[0].gain[...]) all_gaintables[0].gain[...] = 1.0 + 0.0j self.theta_list = initialize_skymodel_voronoi(model, voronoi_components, all_gaintables[0])