示例#1
0
        pb = rsexecute.compute(pb_list[0], sync=True)
        del pb_list

        print("There are " + str(len(original_components)) +
              " components before pb application")

        pb = create_pb(pb, pbtype, use_local=False)
        if show:
            show_image(pb,
                       cm='gray_r',
                       title='%s Primary beam' % basename,
                       components=original_components)
            plt.savefig('PB.png')
            plt.show(block=False)

        original_components = apply_beam_to_skycomponent(
            original_components, pb)
        print("There are " + str(len(original_components)) +
              " components after pb application")
        assert len(original_components
                   ) > 0, "No components after applying primary beam"

    # Make one image per visibility
    future_model_list = [
        rsexecute.execute(create_image_from_visibility)(
            fvis,
            npixel=npixel,
            frequency=frequency,
            nchan=nfreqwin,
            cellsize=cellsize,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"))
    beam = create_image_from_visibility(block_vis,
                                        npixel=npixel,
                                        frequency=frequency,
                                        nchan=nfreqwin,
                                        cellsize=cellsize,
                                        phasecentre=phasecentre)
    beam = create_low_test_beam(beam, use_local=False)

    original_gleam_components = create_low_test_skycomponents_from_gleam(
        flux_limit=flux_limit,
        phasecentre=phasecentre,
        frequency=frequency,
        polarisation_frame=PolarisationFrame('stokesI'),
        radius=0.15)

    all_components = apply_beam_to_skycomponent(original_gleam_components,
                                                beam)
    all_components = filter_skycomponents_by_flux(all_components,
                                                  flux_min=flux_limit)
    all_components = sorted(all_components,
                            key=lambda comp: numpy.max(comp.flux),
                            reverse=True)
    print("Number of components in simulation %d" % len(all_components))

    screen = import_image_from_fits(
        rascil_path('data/models/test_mpc_screen.fits'))
    all_gaintables = create_gaintable_from_screen(block_vis, all_components,
                                                  screen)

    all_skymodel = [
        SkyModel(components=[all_components[i]], gaintable=all_gaintables[i])
        for i, sm in enumerate(all_components)
示例#3
0
    def actualSetup(self, nsources=None, nvoronoi=None):

        # Set up the observation: 10 minutes at transit, with 10s integration.
        # Skip 5/6 points to avoid outstation redundancy

        nfreqwin = 1
        ntimes = 3
        self.rmax = 2500.0
        dec = -40.0 * u.deg
        frequency = [1e8]
        channel_bandwidth = [0.1e8]
        times = numpy.linspace(-10.0, 10.0, ntimes) * numpy.pi / (3600.0 * 12.0)

        phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=dec, frame='icrs', equinox='J2000')
        low = create_named_configuration('LOWBD2', rmax=self.rmax)

        centre = numpy.mean(low.xyz, axis=0)
        distance = numpy.hypot(low.xyz[:, 0] - centre[0],
                               low.xyz[:, 1] - centre[1],
                               low.xyz[:, 2] - centre[2])
        lowouter = low.data[distance > 1000.0][::6]
        lowcore = low.data[distance < 1000.0][::3]
        low.data = numpy.hstack((lowcore, lowouter))

        blockvis = create_blockvisibility(low, times, frequency=frequency, channel_bandwidth=channel_bandwidth,
                                          weight=1.0, phasecentre=phasecentre,
                                          polarisation_frame=PolarisationFrame("stokesI"), zerow=True)

        vis = convert_blockvisibility_to_visibility(blockvis)
        advice = advise_wide_field(vis, guard_band_image=2.0, delA=0.02)

        cellsize = advice['cellsize']
        npixel = 512

        small_model = create_image_from_visibility(
            blockvis,
            npixel=512,
            frequency=frequency,
            nchan=nfreqwin,
            cellsize=cellsize,
            phasecentre=phasecentre)

        vis.data['imaging_weight'][...] = vis.data['weight'][...]
        vis = weight_list_serial_workflow([vis], [small_model])[0]
        vis = taper_list_serial_workflow([vis], 3 * cellsize)[0]

        blockvis = convert_visibility_to_blockvisibility(vis)

        # ### Generate the model from the GLEAM catalog, including application of the primary beam.

        beam = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency,
                                            nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre)
        beam = create_low_test_beam(beam, use_local=False)

        flux_limit = 0.5
        original_gleam_components = create_low_test_skycomponents_from_gleam(flux_limit=flux_limit,
                                                                             phasecentre=phasecentre,
                                                                             frequency=frequency,
                                                                             polarisation_frame=PolarisationFrame(
                                                                                 'stokesI'),
                                                                             radius=0.15)

        all_components = apply_beam_to_skycomponent(original_gleam_components, beam)
        all_components = filter_skycomponents_by_flux(all_components, flux_min=flux_limit)
        voronoi_components = filter_skycomponents_by_flux(all_components, flux_min=1.5)

        def max_flux(elem):
            return numpy.max(elem.flux)

        voronoi_components = sorted(voronoi_components, key=max_flux, reverse=True)

        if nsources is not None:
            all_components = [all_components[0]]

        if nvoronoi is not None:
            voronoi_components = [voronoi_components[0]]

        self.screen = import_image_from_fits(rascil_data_path('models/test_mpc_screen.fits'))
        all_gaintables = create_gaintable_from_screen(blockvis, all_components,
                                                      self.screen)

        gleam_skymodel_noniso = [SkyModel(components=[all_components[i]], gaintable=all_gaintables[i])
                                 for i, sm in enumerate(all_components)]

        # ### Now predict the visibility for each skymodel and apply the gaintable for that skymodel,
        # returning a list of visibilities, one for each skymodel. We then sum these to obtain
        # the total predicted visibility. All images and skycomponents in the same skymodel
        # get the same gaintable applied which means that in this case each skycomponent has a separate gaintable.

        self.all_skymodel_noniso_vis = convert_blockvisibility_to_visibility(blockvis)

        ngroup = 8
        future_vis = rsexecute.scatter(self.all_skymodel_noniso_vis)
        chunks = [gleam_skymodel_noniso[i:i + ngroup] for i in range(0, len(gleam_skymodel_noniso), ngroup)]
        for chunk in chunks:
            result = predict_skymodel_list_rsexecute_workflow(future_vis, chunk, context='2d', docal=True)
            work_vis = rsexecute.compute(result, sync=True)
            for w in work_vis:
                self.all_skymodel_noniso_vis.data['vis'] += w.data['vis']
            assert numpy.max(numpy.abs(self.all_skymodel_noniso_vis.data['vis'])) > 0.0

        self.all_skymodel_noniso_blockvis = convert_visibility_to_blockvisibility(self.all_skymodel_noniso_vis)

        # ### Remove weaker of components that are too close (0.02 rad)
        idx, voronoi_components = remove_neighbouring_components(voronoi_components, 0.02)

        model = create_image_from_visibility(blockvis, npixel=npixel, frequency=frequency,
                                             nchan=nfreqwin, cellsize=cellsize, phasecentre=phasecentre)

        # Use the gaintable for the brightest component as the starting gaintable
        all_gaintables[0].gain[...] = numpy.conjugate(all_gaintables[0].gain[...])
        all_gaintables[0].gain[...] = 1.0 + 0.0j
        self.theta_list = initialize_skymodel_voronoi(model, voronoi_components, all_gaintables[0])