示例#1
0
def test_bytes_rio():
    # Test RGB
    output_profile = dict(
        driver="GTiff",
        dtype=img_rgb_true.dtype,
        count=img_rgb_true.shape[0],
        height=img_rgb_true.shape[1],
        width=img_rgb_true.shape[2],
    )

    with rasterio.MemoryFile() as memfile:
        with memfile.open(**output_profile) as dst:
            dst.write(img_rgb_true)

        bytes_buffer = memfile.read()
        pesto_bytes_rgb = PestoImage.from_bytes(bytes_buffer).to_array()

    # Test RGBN
    output_profile = dict(
        driver="GTiff",
        dtype=img_rgbn_true.dtype,
        count=img_rgbn_true.shape[0],
        height=img_rgbn_true.shape[1],
        width=img_rgbn_true.shape[2],
    )

    with rasterio.MemoryFile() as memfile:
        with memfile.open(**output_profile) as dst:
            dst.write(img_rgbn_true)

        bytes_buffer = memfile.read()
        pesto_bytes_rgbn = PestoImage.from_bytes(bytes_buffer).to_array()

    assert np.all(img_rgb_true == pesto_bytes_rgb)
    assert np.all(img_rgbn_true == pesto_bytes_rgbn)
示例#2
0
    def to_dataset(lyr: str) -> xr.DataArray:
        with rio.MemoryFile() as memfile:
            memfile.write(r_dict[lyr])
            with memfile.open() as src:
                geom = [_geometry.intersection(box(*src.bounds))]
                if geom[0].is_empty:
                    msk, transform, _ = rio_mask.raster_geometry_mask(
                        src, [_geometry], invert=True)
                else:
                    msk, transform, _ = rio_mask.raster_geometry_mask(
                        src, geom, invert=True)
                meta = src.meta
                meta.update({
                    "driver": "GTiff",
                    "height": msk.shape[0],
                    "width": msk.shape[1],
                    "transform": transform,
                    "nodata": nodata,
                })

                with rio.vrt.WarpedVRT(src, **meta) as vrt:
                    ds = xr.open_rasterio(vrt)
                    try:
                        ds = ds.squeeze("band", drop=True)
                    except ValueError:
                        pass
                    coords = {
                        ds_dims[0]: ds.coords[ds_dims[0]],
                        ds_dims[1]: ds.coords[ds_dims[1]]
                    }
                    msk_da = xr.DataArray(msk, coords, dims=ds_dims)
                    ds = ds.where(msk_da, drop=True)
                    ds.attrs["crs"] = r_crs.to_string()
                    ds.name = var_name[lyr]
                    return ds
示例#3
0
def calc_region(region, Crd_reg, res_desired, GeoRef):
    """
    This function reads the region geometry, and returns a masking raster equal to 1 for pixels within and 0 outside of
    the region.

    :param region: Region geometry
    :type region: Geopandas series
    :param Crd_reg: Coordinates of the region
    :type Crd_reg: list
    :param res_desired: Desired high resolution of the output raster
    :type res_desired: list
    :param GeoRef: Georeference dictionary containing *RasterOrigin*, *RasterOrigin_alt*, *pixelWidth*, and *pixelHeight*.
    :type GeoRef: dict

    :return A_region: Masking raster of the region.
    :rtype: numpy array
    """
    latlim = Crd_reg[2] - Crd_reg[0]
    lonlim = Crd_reg[3] - Crd_reg[1]
    M = int(math.fabs(latlim) / res_desired[0])
    N = int(math.fabs(lonlim) / res_desired[1])
    A_region = np.ones((M, N))
    origin = [Crd_reg[3], Crd_reg[2]]

    if region['geometry'].geom_type == "MultiPolygon":
        features = [feature for feature in region['geometry']]
    else:
        features = [region['geometry']]
    west = origin[0]
    south = origin[1]
    profile = {
        "driver":
        "GTiff",
        "height":
        M,
        "width":
        N,
        "count":
        1,
        "dtype":
        rasterio.float64,
        "crs":
        "EPSG:4326",
        "transform":
        rasterio.transform.from_origin(west, south, GeoRef["pixelWidth"],
                                       GeoRef["pixelHeight"]),
    }

    with rasterio.MemoryFile() as memfile:
        with memfile.open(**profile) as f:
            f.write(A_region, 1)
            out_image, out_transform = rasterio.mask.mask(f,
                                                          features,
                                                          crop=False,
                                                          nodata=0,
                                                          all_touched=False,
                                                          filled=True)
        A_region = out_image[0]

    return A_region
示例#4
0
def _compress_image(im: np.ndarray,
                    driver='PNG',
                    **opts) -> bytes:
    import rasterio
    import warnings

    if im.dtype != np.uint8:
        raise ValueError("Only support uint8 images on input")

    if im.ndim == 3:
        h, w, nc = im.shape
        bands = np.transpose(im, axes=(2, 0, 1))
    elif im.ndim == 2:
        (h, w), nc = im.shape, 1
        bands = im.reshape(nc, h, w)
    else:
        raise ValueError('Expect 2 or 3 dimensional array got: {}'.format(im.ndim))

    rio_opts = dict(width=w,
                    height=h,
                    count=nc,
                    driver=driver,
                    dtype='uint8',
                    **opts)

    with warnings.catch_warnings():
        warnings.simplefilter('ignore', rasterio.errors.NotGeoreferencedWarning)

        with rasterio.MemoryFile() as mem:
            with mem.open(**rio_opts) as dst:
                dst.write(bands)
            return mem.read()
示例#5
0
def test_plot_grid_data():
    x0 = (0, 0)
    n = 32
    dx = 1.0 / n
    transform = rasterio.transform.from_origin(west=0.0,
                                               north=1.0,
                                               xsize=dx,
                                               ysize=dx)

    # Interpolate a scalar field
    array = np.array([[dx * (i + j) for j in range(n + 1)]
                      for i in range(n + 1)])
    missing = -9999.0
    array[0, 0] = missing
    array = np.flipud(array)

    memfile = rasterio.MemoryFile(ext='.tif')
    opts = {
        'driver': 'GTiff',
        'count': 1,
        'width': n,
        'height': n,
        'transform': transform,
        'nodata': -9999
    }

    with memfile.open(**opts) as dataset:
        dataset.write(array, indexes=1)
    dataset = memfile.open()

    levels = np.linspace(-0.5, 0.5, 5)
    contours = icepack.plot.contourf(dataset, levels=levels)
    assert contours is not None
    colorbar = plt.colorbar(contours)
    assert colorbar is not None
示例#6
0
def _create_id_grid(
    xmin: float,
    ymin: float,
    xmax: float,
    ymax: float,
    resolution: float,
    crs: str = "epsg:4326",
) -> rasterio.io.DatasetWriter:
    """
    Creates an in-memory raster with a grid where each pixel has a unique
    ID. The unique IDs start at 0 in the upper left corner and increments
    from left to right and top to bottom. The max value for unique ID
    will be (height * width) - 1.

    Parameters
    ----------
    xmin : float
        Upper-left corner x coordinate.
    ymin : float
        Lower-right corner y coordinate.
    xmax : float
        Lower-left corner x coordinate.
    ymax : float
        Upper-left corner y coordinate.
    resolution : float
        Pixel resolution.
    crs : str
        Coordinate Reference System. Must be in the form epsg:code.

    Returns
    -------
    DatasetWriter
        In-memory raster with unique IDs.

    Notes
    -----
    Coordinates and resolution should match with the reference system
    passed in crs.

    """
    height = np.ceil((ymax - ymin) / resolution).astype(int)
    width = np.ceil((xmax - xmin) / resolution).astype(int)
    transform = rasterio.transform.from_origin(xmin, ymax, resolution,
                                               resolution)
    arr = np.arange(height * width, dtype=np.uint32).reshape(height, width)

    memfile = rasterio.MemoryFile()
    grid = memfile.open(
        driver="MEM",
        height=height,
        width=width,
        count=1,
        crs=crs,
        transform=transform,
        dtype=rasterio.uint32,
    )
    grid.write(arr, 1)

    return grid
示例#7
0
 def _as_rasterio_dataset(self):
     # create in-memory rasterio dataset
     prof = self._default_rasterio_profile()
     memfile = rasterio.MemoryFile()
     with memfile.open(**prof) as ds:
         ds.write(self._data(), 1)
     ds = memfile.open()
     return ds
示例#8
0
        def _ssebop(url: str) -> List[np.ndarray]:  # type: ignore
            r = session.get(url)
            z = zipfile.ZipFile(io.BytesIO(r.content))

            with rio.MemoryFile() as memfile:
                memfile.write(z.read(z.filelist[0].filename))
                with memfile.open() as src:
                    return list(src.sample(co_list))
示例#9
0
def test_notgeoref_warning():
    with rasterio.MemoryFile() as mem:
        with mem.open(driver='GTiff',
                      width=10,
                      height=10,
                      dtype='uint8',
                      count=1) as src:
            pass
        with pytest.warns(NotGeoreferencedWarning):
            with mem.open() as dst:
                pass
示例#10
0
        def _ssebop(urls):
            dt, url = urls
            r = session.get(url)
            z = zipfile.ZipFile(io.BytesIO(r.content))

            with rio.MemoryFile() as memfile:
                memfile.write(z.read(z.filelist[0].filename))
                with memfile.open() as src:
                    return {
                        "dt": dt,
                        "eta": [e[0] for e in src.sample([(lon, lat)])][0],
                    }
示例#11
0
def _sample_tiff(
    content: bytes,
    coords: Union[List[Tuple[float, float]], Iterator[Tuple[float, float]]],
    crs: str,
    resampling: rio_warp.Resampling,
) -> np.ndarray:
    """Sample a tiff response for a list of coordinates.

    Parameters
    ----------
    content : bytes
    coords : list of tuples
        A list containing x- and y-coordinates of a mesh, [(x, y), ...].
    crs : str
        The spatial reference system of the input grid, defaults to epsg:4326.
    resolution : float
    resampling : rasterio.warp.Resampling
        The reasmpling method to use if the input crs is not in the supported
        3DEP's CRS list which are epsg:4326 and epsg:3857. It defaults to bilinear.
        The available methods can be found `here <https://rasterio.readthedocs.io/en/latest/api/rasterio.enums.html#rasterio.enums.Resampling>`__

    Returns
    -------
    numpy.ndarray
        An array of elevations where its index matches the input coords list
    """
    with rio.MemoryFile() as memfile:
        memfile.write(content)
        with memfile.open() as src:
            transform, width, height = rio_warp.calculate_default_transform(
                src.crs, crs, src.width, src.height, *src.bounds)
            kwargs = src.meta.copy()
            kwargs.update({
                "crs": crs,
                "transform": transform,
                "width": width,
                "height": height
            })

            with rio.vrt.WarpedVRT(src, **kwargs) as vrt:
                if crs != src.crs:
                    for i in range(1, src.count + 1):
                        rio_warp.reproject(
                            source=rio.band(src, i),
                            destination=rio.band(vrt, i),
                            src_transform=src.transform,
                            src_crs=src.crs,
                            dst_transform=transform,
                            crs=crs,
                            resampling=resampling,
                        )
                return np.array([e.item() for e in vrt.sample(coords)])
示例#12
0
def create_image(template, data, transform=None):
    log.debug('Creating new image')
    transform = transform or template.transform
    profile = template.profile.copy()
    profile.update({DRIVER: GTIFF,
                    COUNT: data.shape[0],
                    HEIGHT: data.shape[1],
                    WIDTH: data.shape[2],
                    TRANSFORM: transform,
                    PHOTOMETRIC: RGB})
    new_image = rio.MemoryFile().open(**profile)
    new_image.write(data)
    return new_image
示例#13
0
def convex_hull_exact(src):
    kwargs = dict(bidx=1, band=False, as_mask=True, geographic=True)

    data = src.read()
    if np.any(np.isnan(data)) and src.nodata is not None:
        # hack: replace NaNs with nodata to make sure they are excluded
        with rasterio.MemoryFile() as memfile, memfile.open(**src.profile) as tmpsrc:
            data[np.isnan(data)] = src.nodata
            tmpsrc.write(data)
            dataset_shape = list(rasterio.features.dataset_features(tmpsrc, **kwargs))
    else:
        dataset_shape = list(rasterio.features.dataset_features(src, **kwargs))

    convex_hull = MultiPolygon([shape(s['geometry']) for s in dataset_shape]).convex_hull
    return convex_hull
示例#14
0
def _recompress_tar_member(
    readable_member: ReadableMember,
    out_tar: tarfile.TarFile,
    compress_args: Dict,
    verify: PackageChecksum,
    tmpdir: Path,
):
    member, open_member = readable_member

    new_member = copy.copy(member)
    # Copy with a minimum 664 permission, which is used by USGS tars.
    # (some of our repacked datasets have only user read permission.)
    new_member.mode = new_member.mode | 0o664

    # If it's a tif, check whether it's compressed.
    if member.name.lower().endswith(".tif"):
        with open_member() as input_fp, rasterio.open(input_fp) as ds:
            if not ds.profile.get("compress"):
                # No compression: let's compress it
                with rasterio.MemoryFile(filename=member.name) as memory_file:
                    try:
                        _recompress_image(ds, memory_file, **compress_args)
                    except Exception as e:
                        raise RecompressFailure(
                            f"Error during {member.name}") from e
                    new_member.size = memory_file.getbuffer().nbytes
                    out_tar.addfile(new_member, memory_file)

                    # Image has been written. Seek to beginning to take a checksum.
                    memory_file.seek(0)
                    verify.add(memory_file, tmpdir / new_member.name)
                    return
            else:
                # It's already compressed, we'll fall through and copy it verbatim.
                pass

    if member.size == 0:
        # Typically a directory entry.
        out_tar.addfile(new_member)
        return

    # Copy unchanged into target (typically text/metadata files).
    with open_member() as member:
        file_contents = member.read()
    out_tar.addfile(new_member, io.BytesIO(file_contents))
    verify.add(io.BytesIO(file_contents), tmpdir / new_member.name)
    del file_contents
示例#15
0
def to_src(arr, metadata):

    if metadata['driver'] != 'GTiff':
        metadata['driver'] = 'GTiff'

    with ExitStack() as stack:
        memfile = stack.enter_context(rasterio.MemoryFile())
        with memfile.open(**metadata) as data:  # Open as DatasetWriter
            if arr.ndim == 2:
                data.write_band(1, arr)
                logger.debug(f"Saved band and metadata as DataSetWriter")
            else:
                data.write(arr.astype(metadata['dtype']))
                logger.debug(f"Saved array and metadata as DataSetWriter")
            del arr
        with memfile.open() as data:  # Reopen as DatasetReader
            yield data
示例#16
0
def get_elevation_bybbox(bbox, coords):
    """Get elevation from DEM data for a list of coordinates.

    The elevations are extracted from SRTM1 (30-m resolution) data.
    This function is intended for getting elevations for a gridded dataset.

    Parameters
    ----------
    bbox : list
        Bounding box with coordinates in [west, south, east, north] format.
    coords : list of tuples
        A list of coordinates in (lon, lat) format to extract the elevation.

    Returns
    -------
    array_like
        A numpy array of elevations in meters
    """

    import rasterio

    west, south, east, north = bbox
    url = "https://portal.opentopography.org/otr/getdem"
    payload = dict(
        demtype="SRTMGL1",
        west=round(west, 6),
        south=round(south, 6),
        east=round(east, 6),
        north=round(north, 6),
        outputFormat="GTiff",
    )

    session = retry_requests()
    try:
        r = session.get(url, params=payload)
    except HTTPError or ConnectionError or Timeout or RequestException:
        raise

    with rasterio.MemoryFile() as memfile:
        memfile.write(r.content)
        with memfile.open() as src:
            elevations = np.array([e[0] for e in src.sample(coords)],
                                  dtype=np.float32)

    return elevations
示例#17
0
    def to_bytes(self) -> bytes:
        driver = ImageDriver.TIFF if self.bands() > 3 else ImageDriver.PNG

        output_profile = dict(
            driver=driver.driver,
            width=self.width(),
            height=self.height(),
            count=self.bands(),
            dtype=self.array.dtype,
        )

        with rasterio.MemoryFile() as memfile:
            with memfile.open(**output_profile) as dst:
                dst.write(self.array)

            buffer = memfile.read()

        return buffer
示例#18
0
def force_same_scaling(images, choose=first):
    footprints = {image: shape_to_polygon(next(shapes(image.dataset_mask(), transform=image.transform)))
                  for image in images}
    reference, rest = split(images, choose)
    scaled = [reference]
    while rest:
        candidate = most_intersecting(footprints, scaled, rest)
        rest.remove(candidate)
        scale = measure_scaling(footprints, scaled, candidate)
        log.info(f'Scaling {candidate} by {scale}')
        profile = candidate.profile
        profile.update({'photometric': 'RGB'})
        copy = rio.MemoryFile().open(**profile)
        types = {i: dtype for i, dtype in zip(candidate.indexes, candidate.dtypes)}
        for i in range(1, 4):
            copy.write((candidate.read(i) * scale).astype(types[i]), i)
        scaled.append(copy)
    return scaled
示例#19
0
def reproject_to_memory(image, crs):
    # https://rasterio.readthedocs.io/en/stable/topics/reproject.html
    transform, width, height = calculate_default_transform(image.crs, crs, image.width, image.height, *image.bounds)
    profile = image.profile.copy()
    profile.update({CRS: crs,
                    TRANSFORM: transform,
                    WIDTH: width,
                    HEIGHT: height})
    transformed = rio.MemoryFile().open(**profile)
    for i in range(1, image.count + 1):
        reproject(source=rio.band(image, i),
                  destination=rio.band(transformed, i),
                  src_transform=image.transform,
                  src_crs=image.crs,
                  dst_transform=transform,
                  dst_crs=crs,
                  resampling=Resampling.nearest)
    return transformed
示例#20
0
def test_no_notgeoref_warning(transform, gcps, rpcs):
    with rasterio.MemoryFile() as mem:
        with mem.open(driver='GTiff',
                      width=10,
                      height=10,
                      dtype='uint8',
                      count=1,
                      transform=transform) as src:
            if gcps:
                src.gcps = (gcps, rasterio.crs.CRS.from_epsg(4326))
            if rpcs:
                src.rpcs = rpcs

        with pytest.warns(None) as record:
            with mem.open() as dst:
                pass

        assert len(record) == 0
示例#21
0
    def test_init(self):
        """
        Test that all possible inputs work properly in Raster class init
        """

        # first, filename
        r = gr.Raster(datasets.get_path("landsat_B4"))
        assert isinstance(r, gr.Raster)

        # second, passing a Raster itself (points back to Raster passed)
        r2 = gr.Raster(r)
        assert isinstance(r2, gr.Raster)

        # third, rio.Dataset
        ds = rio.open(datasets.get_path("landsat_B4"))
        r3 = gr.Raster(ds)
        assert isinstance(r3, gr.Raster)
        assert r3.filename is not None

        # finally, as memoryfile
        memfile = rio.MemoryFile(open(datasets.get_path("landsat_B4"), 'rb'))
        r4 = gr.Raster(memfile)
        assert isinstance(r4, gr.Raster)

        assert np.logical_and.reduce((np.array_equal(r.data,
                                                     r2.data,
                                                     equal_nan=True),
                                      np.array_equal(r2.data,
                                                     r3.data,
                                                     equal_nan=True),
                                      np.array_equal(r3.data,
                                                     r4.data,
                                                     equal_nan=True)))

        assert np.logical_and.reduce((np.all(r.data.mask == r2.data.mask),
                                      np.all(r2.data.mask == r3.data.mask),
                                      np.all(r3.data.mask == r4.data.mask)))

        # the data will not be copied, immutable objects will
        r.data[0, 0, 0] += 5
        assert r2.data[0, 0, 0] == r.data[0, 0, 0]

        r.nbands = 2
        assert r.nbands != r2.nbands
示例#22
0
def make_rio_dataset(array, missing=-9999.0):
    ny = array.shape[0] - 1
    nx = array.shape[1] - 1
    transform = rasterio.transform.from_origin(
        west=0.0, north=1.0, xsize=1 / nx, ysize=1 / ny
    )

    memfile = rasterio.MemoryFile(ext=".tif")
    opts = {
        "driver": "GTiff",
        "count": 1,
        "width": nx + 1,
        "height": ny + 1,
        "dtype": array.dtype,
        "transform": transform,
        "nodata": missing,
    }

    with memfile.open(**opts) as dataset:
        dataset.write(array, indexes=1)
    return memfile.open()
示例#23
0
def make_rio_dataset(array, missing=-9999.):
    ny = array.shape[0] - 1
    nx = array.shape[1] - 1
    transform = rasterio.transform.from_origin(west=0.0,
                                               north=1.0,
                                               xsize=1 / nx,
                                               ysize=1 / ny)

    memfile = rasterio.MemoryFile(ext='.tif')
    opts = {
        'driver': 'GTiff',
        'count': 1,
        'width': nx + 1,
        'height': ny + 1,
        'dtype': array.dtype,
        'transform': transform,
        'nodata': missing
    }

    with memfile.open(**opts) as dataset:
        dataset.write(array, indexes=1)
    return memfile.open()
示例#24
0
    def reproject(content):
        with rio.MemoryFile() as memfile:
            memfile.write(content)
            with memfile.open() as src:
                transform, width, height = rio_warp.calculate_default_transform(
                    src.crs, crs, src.width, src.height, *src.bounds
                )
                kwargs = src.meta.copy()
                kwargs.update(
                    {"crs": crs, "transform": transform, "width": width, "height": height}
                )

                with rio.vrt.WarpedVRT(src, **kwargs) as vrt:
                    if crs != src.crs:
                        for i in range(1, src.count + 1):
                            rio_warp.reproject(
                                source=rio.band(src, i),
                                destination=rio.band(vrt, i),
                                src_transform=src.transform,
                                src_crs=src.crs,
                                dst_transform=transform,
                                crs=crs,
                                resampling=resampling,
                            )

                    da = xr.open_rasterio(vrt)
                    try:
                        da = da.squeeze("band", drop=True)
                    except ValueError:
                        pass

                    da.name = "elevation"
                    da.attrs["transform"] = transform
                    da.attrs["res"] = (transform[0], transform[4])
                    da.attrs["bounds"] = tuple(vrt.bounds)
                    da.attrs["nodatavals"] = vrt.nodatavals
                    da.attrs["crs"] = vrt.crs.to_string()
        return da
示例#25
0
def gridme(csvfile, outfile, chunksize, decimal_comma=False, **kwargs):
    """Grid point cloud to UTM grid"""
    from pointtogrid import peskycsv

    import rasterio
    from rio_cogeo import cogeo

    # define csv parsing settings
    csvkw = dict(chunksize=chunksize)
    if decimal_comma:
        csvkw.update(decimal=',')

    data, profile = peskycsv.flow(path=csvfile,
                                  show_pbar=True,
                                  csvkw=csvkw,
                                  **kwargs)

    profile = dict(profile, **COG_PROFILE)

    with rasterio.MemoryFile() as memfile:
        with memfile.open(**profile) as mem:
            mem.write(data, indexes=1)
            cogeo.cog_translate(mem, outfile, profile)
示例#26
0
from citycatio import Model
import pandas as pd
import unittest
import rasterio as rio
import numpy as np
from rasterio.transform import Affine
import geopandas as gpd
from shapely.geometry import Polygon

dem_file = rio.MemoryFile()
x_min, y_max = 100, 500
res = 5
height, width = 100, 200
x_max = x_min + width * res
y_min = y_max - height * res
array = np.round(np.random.random((height, width)), 3)
transform = Affine.translation(x_min, y_max) * Affine.scale(res, -res)

with rio.open(
        dem_file,
        'w',
        driver='GTiff',
        height=height,
        width=width,
        count=1,
        dtype=array.dtype,
        transform=transform,
        nodata=-9999
) as dst:
    dst.write(array, 1)
示例#27
0
def write_cog(fname,
              pix,
              overwrite=False,
              blocksize=None,
              overview_resampling=None,
              overview_levels=None,
              **extra_rio_opts):
    """ Write xarray.Array to GeoTiff file.
    """
    from pathlib import Path
    import rasterio
    from rasterio.shutil import copy as rio_copy

    if blocksize is None:
        blocksize = 512
    if overview_levels is None:
        overview_levels = [2**i for i in range(1, 6)]

    if overview_resampling is None:
        overview_resampling = 'nearest'

    nodata = pix.attrs.get('nodata', None)
    resampling = rasterio.enums.Resampling[overview_resampling]

    if pix.ndim == 2:
        h, w = pix.shape
        nbands = 1
        band = 1
    elif pix.ndim == 3:
        nbands, h, w = pix.shape
        band = tuple(i for i in range(1, nbands+1))
    else:
        raise ValueError('Need 2d or 3d ndarray on input')

    if not isinstance(fname, Path):
        fname = Path(fname)

    if fname.exists():
        if overwrite:
            fname.unlink()
        else:
            raise IOError("File exists")

    gbox = pix.geobox

    if gbox is None:
        raise ValueError("Not geo-registered: check crs attribute")

    assert gbox.shape == (h, w)

    A = gbox.transform
    crs = str(gbox.crs)

    rio_opts = dict(width=w,
                    height=h,
                    count=nbands,
                    dtype=pix.dtype.name,
                    crs=crs,
                    transform=A,
                    tiled=True,
                    blockxsize=min(blocksize, w),
                    blockysize=min(blocksize, h),
                    zlevel=9,
                    predictor=3 if pix.dtype.kind == 'f' else 2,
                    compress='DEFLATE')

    if nodata is not None:
        rio_opts.update(nodata=nodata)

    rio_opts.update(extra_rio_opts)

    # copy re-compresses anyway so skip compression for temp image
    tmp_opts = rio_opts.copy()
    tmp_opts.pop('compress')
    tmp_opts.pop('predictor')
    tmp_opts.pop('zlevel')

    with rasterio.Env(GDAL_TIFF_OVR_BLOCKSIZE=blocksize):
        with rasterio.MemoryFile() as mem:
            with mem.open(driver='GTiff', **tmp_opts) as tmp:
                tmp.write(pix.values, band)
                tmp.build_overviews(overview_levels, resampling)

                rio_copy(tmp,
                         fname,
                         driver='GTiff',
                         copy_src_overviews=True,
                         **rio_opts)
示例#28
0
def test_interpolating_to_mesh():
    # Make the mesh the square `[1/4, 3/4] x [1/4, 3/4]`
    nx, ny = 32, 32
    mesh = firedrake.UnitSquareMesh(nx, ny)
    x, y = firedrake.SpatialCoordinate(mesh)
    Vc = mesh.coordinates.function_space()
    f = firedrake.interpolate(
        firedrake.as_vector((x / 2 + 1 / 4, y / 2 + 1 / 4)), Vc)
    mesh.coordinates.assign(f)

    # Set up the geometry of the gridded data set
    x0 = (0, 0)
    n = 32
    dx = 1.0 / n
    transform = rasterio.transform.from_origin(west=0.0,
                                               north=1.0,
                                               xsize=dx,
                                               ysize=dx)

    # Interpolate a scalar field
    array = np.array([[dx * (i + j) for j in range(n + 1)]
                      for i in range(n + 1)])
    missing = -9999.0
    array[0, 0] = missing
    array = np.flipud(array)

    memfile = rasterio.MemoryFile(ext='.tif')
    opts = {
        'driver': 'GTiff',
        'count': 1,
        'width': n,
        'height': n,
        'transform': transform,
        'nodata': -9999
    }

    with memfile.open(**opts) as dataset:
        dataset.write(array, indexes=1)
    dataset = memfile.open()

    Q = firedrake.FunctionSpace(mesh, family='CG', degree=1)
    p = firedrake.interpolate(x + y, Q)
    q = icepack.interpolate(dataset, Q)

    assert firedrake.norm(p - q) / firedrake.norm(p) < 1 / n

    # Interpolate a vector field
    array_vx = np.copy(array)
    array_vy = np.array([[dx * (j - i) for j in range(n + 1)]
                         for i in range(n + 1)])
    array_vy[-1, -1] = -9999.0
    array_vy = np.flipud(array_vy)

    memfile_vx, memfile_vy = rasterio.MemoryFile(), rasterio.MemoryFile()
    with memfile_vx.open(**opts) as vx, memfile_vy.open(**opts) as vy:
        vx.write(array_vx, indexes=1)
        vy.write(array_vy, indexes=1)
    vx, vy = memfile_vx.open(), memfile_vy.open()

    V = firedrake.VectorFunctionSpace(mesh, family='CG', degree=1)
    u = firedrake.interpolate(firedrake.as_vector((x + y, x - y)), V)
    v = icepack.interpolate((vx, vy), V)

    assert firedrake.norm(u - v) / firedrake.norm(u) < 1 / n
示例#29
0
def ssebopeta_bygeom(geometry,
                     start=None,
                     end=None,
                     years=None,
                     resolution=None):
    """Gridded data from the SSEBop database.

    Note
    ----
    Since there's still no web service available for subsetting, the data first
    needs to be downloads for the requested period then the data is masked by the
    region interest locally. Therefore, it's not as fast as other functions and
    the bottleneck could be download speed.

    Parameters
    ----------
    geometry : Geometry
        The geometry for downloading clipping the data. For a box geometry,
        the order should be as follows:
        geom = box(minx, miny, maxx, maxy)
    start : string or datetime
        Starting date
    end : string or datetime
        Ending date
    years : list
        List of years
    resolution : float
        The desired output resolution for the output in decimal degree,
        defaults to no resampling. The resampling is done using bilinear method

    Returns
    -------
    xarray.DataArray
        The actual ET for the requested region.
    """

    from shapely.geometry import Polygon
    import socket
    from unittest.mock import patch
    import zipfile
    import io

    if not isinstance(geometry, Polygon):
        raise TypeError("Geometry should be of type Shapely Polygon.")

    if years is None and start is not None and end is not None:
        if pd.to_datetime(start) < pd.to_datetime("2000-01-01"):
            raise ValueError("SSEBop database ranges from 2000 till 2018.")
    elif years is not None and start is None and end is None:
        years = years if isinstance(years, list) else [years]
        dates = [pd.date_range(f"{year}0101", f"{year}1231") for year in years]
        for d in dates:
            if d[0] < pd.to_datetime("2000-01-01"):
                raise ValueError("SSEBop database ranges from 2000 till 2018.")
    else:
        raise ValueError(
            "Either years or start and end arguments should be provided.")

    base_url = "https://edcintl.cr.usgs.gov/downloads/sciweb1/shared//uswem/web/conus/eta/modis_eta/daily/downloads"
    f_list = [(d,
               f"{base_url}/det{d.strftime('%Y%j')}.modisSSEBopETactual.zip")
              for d in pd.date_range(start, end)]

    print(
        f"[CNT: ({geometry.centroid.x:.2f}, {geometry.centroid.y:.2f})] ".
        ljust(MARGINE) + f"Downloading the data from SSEBop",
        end=" >>> ",
    )

    orig_getaddrinfo = socket.getaddrinfo
    session = utils.retry_requests()

    def getaddrinfoIPv4(host, port, family=0, type=0, proto=0, flags=0):
        return orig_getaddrinfo(
            host=host,
            port=port,
            family=socket.AF_INET,
            type=type,
            proto=proto,
            flags=flags,
        )

    # disable IPv6 to speedup the download
    with patch("socket.getaddrinfo", side_effect=getaddrinfoIPv4):
        # find the mask using the first dataset
        dt, url = f_list[0]

        try:
            r = session.get(url)
        except HTTPError or ConnectionError or Timeout or RequestException:
            raise

        z = zipfile.ZipFile(io.BytesIO(r.content))
        with rasterio.MemoryFile() as memfile:
            memfile.write(z.read(z.filelist[0].filename))
            with memfile.open() as src:
                ras_msk, _ = rasterio.mask.mask(src, [geometry])
                nodata = src.nodata
                with xr.open_rasterio(src) as ds:
                    ds.data = ras_msk
                    msk = ds < nodata if nodata > 0.0 else ds > nodata
                    ds = ds.where(msk, drop=True)
                    ds = ds.expand_dims(dict(time=[dt]))
                    ds = ds.squeeze("band", drop=True)
                    ds.name = "eta"
                    data = ds * 1e-3

        # apply the mask to the rest of the data and merge
        for dt, url in f_list[1:]:
            try:
                r = session.get(url)
            except HTTPError or ConnectionError or Timeout or RequestException:
                raise

            z = zipfile.ZipFile(io.BytesIO(r.content))
            with rasterio.MemoryFile() as memfile:
                memfile.write(z.read(z.filelist[0].filename))
                with memfile.open() as src:
                    with xr.open_rasterio(src) as ds:
                        ds = ds.where(msk, drop=True)
                        ds = ds.expand_dims(dict(time=[dt]))
                        ds = ds.squeeze("band", drop=True)
                        ds.name = "eta"
                        data = xr.merge([data, ds * 1e-3])

    data["eta"].attrs["units"] = "mm/day"

    if resolution is not None:
        fac = resolution * 3600.0 / 30.0  # from degree to 1 km
        new_x = np.linspace(data.x[0], data.x[-1], int(data.dims["x"] / fac))
        new_y = np.linspace(data.y[0], data.y[-1], int(data.dims["y"] / fac))
        data = data.interp(x=new_x, y=new_y, method="linear")

    print("finished.")
    return data
示例#30
0
def dem_bygeom(geometry, demtype="SRTMGL1", resolution=None, output=None):
    """Get DEM data from `OpenTopography <https://opentopography.org/>`_ service.

    Parameters
    ----------
    geometry : Geometry
        A shapely Polygon.
    demtype : string, optional
        The type of DEM to be downloaded, default to SRTMGL1 for 30 m resolution.
        Available options are 'SRTMGL3' for SRTM GL3 (3 arc-sec or ~90m) and 'SRTMGL1' for
        SRTM GL1 (1 arc-sec or ~30m).
    resolution : float, optional
        The desired output resolution for the output in decimal degree,
        defaults to no resampling. The resampling is done using cubic convolution method
    output : string or Path, optional
        The path to save the data as raster, defaults to None.

    Returns
    -------
    xarray.DataArray
        DEM in meters.
    """

    import rasterio
    import rasterio.mask
    from shapely.geometry import Polygon
    from rasterio.enums import Resampling
    import os

    if not isinstance(geometry, Polygon):
        raise TypeError("Geometry should be of type Shapely Polygon.")

    west, south, east, north = geometry.bounds

    url = "https://portal.opentopography.org/otr/getdem"
    payload = dict(
        demtype=demtype,
        west=round(west, 6),
        south=round(south, 6),
        east=round(east, 6),
        north=round(north, 6),
        outputFormat="GTiff",
    )

    print(
        f"[CNT: ({geometry.centroid.x:.2f}, {geometry.centroid.y:.2f})] ".
        ljust(MARGINE) + f"Downloading DEM data from OpenTopography",
        end=" >>> ",
    )

    session = utils.retry_requests()
    try:
        r = session.get(url, params=payload)
    except ConnectionError or Timeout or RequestException:
        raise

    with rasterio.MemoryFile() as memfile:
        memfile.write(r.content)
        with memfile.open() as src:
            if resolution is not None:
                fac = resolution * 3600.0  # degree to arc-sec since res is 1 arc-sec
                data = src.read(
                    out_shape=(src.count, int(src.width / fac),
                               int(src.height / fac)),
                    resampling=Resampling.bilinear,
                )
                transform = src.transform * src.transform.scale(
                    (src.width / data.shape[1]), (src.height / data.shape[2]))
                meta = src.meta
                meta.update({
                    "driver": "GTiff",
                    "width": data.shape[1],
                    "height": data.shape[2],
                    "transform": transform,
                })

                with rasterio.open("/tmp/resampled.tif", "w", **meta) as tmp:
                    tmp.write(data)

                with rasterio.open("/tmp/resampled.tif", "r") as tmp:
                    ras_msk, transform = rasterio.mask.mask(tmp, [geometry])
                    nodata = tmp.nodata
                    dest = "/tmp/resampled.tif"
                    meta = tmp.meta
                    meta.update({
                        "driver": "GTiff",
                        "width": ras_msk.shape[1],
                        "height": ras_msk.shape[2],
                        "transform": transform,
                    })
            else:
                ras_msk, transform = rasterio.mask.mask(src, [geometry])
                nodata = src.nodata
                dest = src
                meta = src.meta
                meta.update({
                    "driver": "GTiff",
                    "width": ras_msk.shape[1],
                    "height": ras_msk.shape[2],
                    "transform": transform,
                })

            if output is not None:
                data_dir = Path(output).parent
                if not data_dir.is_dir():
                    try:
                        os.makedirs(data_dir)
                    except OSError:
                        print(
                            f"[CNT: ({geometry.centroid.x:.2f}, {geometry.centroid.y:.2f})] "
                            .ljust(MARGINE) +
                            f"Input directory cannot be created: {data_dir}")
                with rasterio.open(output, "w", **meta) as f:
                    f.write(ras_msk)

            with xr.open_rasterio(dest) as ds:
                ds.data = ras_msk
                msk = ds < nodata if nodata > 0.0 else ds > nodata
                ds = ds.where(msk, drop=True)
                ds = ds.squeeze("band", drop=True)
                ds.name = "elevation"
                ds.attrs["units"] = "meters"

    print("finished.")

    return ds