def main(ctx: click.Context, profile: Optional[str], verbose: int, tmpdir: str): """The main click command. Sets the profile, verbosity, and tmp_dir in RVConfig. """ # Make sure current directory is on PYTHON_PATH # so that we can run against modules in current dir. sys.path.append(os.curdir) rv_config.set_verbosity(verbosity=verbose + 1) rv_config.set_tmp_dir_root(tmp_dir_root=tmpdir) rv_config.set_everett_config(profile=profile)
def _run_command(cfg_json_uri: str, command: str, split_ind: Optional[int] = None, num_splits: Optional[int] = None, runner: Optional[str] = None): """Run a single command using a serialized PipelineConfig. Args: cfg_json_uri: URI of a JSON file with a serialized PipelineConfig command: name of command to run split_ind: the index that a split command should assume num_splits: the total number of splits to use runner: the name of the runner to use """ pipeline_cfg_dict = file_to_json(cfg_json_uri) rv_config_dict = pipeline_cfg_dict.get('rv_config') rv_config.set_everett_config(profile=rv_config.profile, config_overrides=rv_config_dict) tmp_dir_obj = rv_config.get_tmp_dir() tmp_dir = tmp_dir_obj.name cfg = build_config(pipeline_cfg_dict) pipeline = cfg.build(tmp_dir) if num_splits is not None and split_ind is None and runner is not None: runner = registry.get_runner(runner)() split_ind = runner.get_split_ind() command_fn = getattr(pipeline, command) if num_splits is not None and num_splits > 1: msg = 'Running {} command split {}/{}...'.format( command, split_ind + 1, num_splits) click.secho(msg, fg='green', bold=True) command_fn(split_ind=split_ind, num_splits=num_splits) else: msg = 'Running {} command...'.format(command) click.secho(msg, fg='green', bold=True) command_fn()
def __init__(self, model_bundle_uri, tmp_dir, update_stats=False, channel_order=None): """Creates a new Predictor. Args: model_bundle_uri: URI of the model bundle to use. Can be any type of URI that Raster Vision can read. tmp_dir: Temporary directory in which to store files that are used by the Predictor. This directory is not cleaned up by this class. channel_order: Option for a new channel order to use for the imagery being predicted against. If not present, the channel_order from the original configuration in the predict package will be used. """ self.tmp_dir = tmp_dir self.update_stats = update_stats self.model_loaded = False bundle_path = download_if_needed(model_bundle_uri, tmp_dir) bundle_dir = join(tmp_dir, 'bundle') make_dir(bundle_dir) with zipfile.ZipFile(bundle_path, 'r') as bundle_zip: bundle_zip.extractall(path=bundle_dir) config_path = join(bundle_dir, 'pipeline-config.json') config_dict = file_to_json(config_path) rv_config.set_everett_config( config_overrides=config_dict.get('rv_config')) config_dict = upgrade_config(config_dict) self.pipeline = build_config(config_dict).build(tmp_dir) self.scene = None if not hasattr(self.pipeline, 'predict'): raise Exception( 'pipeline in model bundle must have predict method') self.scene = self.pipeline.config.dataset.validation_scenes[0] if not hasattr(self.scene.raster_source, 'uris'): raise Exception( 'raster_source in model bundle must have uris as field') if not hasattr(self.scene.label_store, 'uri'): raise Exception( 'label_store in model bundle must have uri as field') for t in self.scene.raster_source.transformers: t.update_root(bundle_dir) if self.update_stats: stats_analyzer = StatsAnalyzerConfig( output_uri=join(bundle_dir, 'stats.json')) self.pipeline.config.analyzers = [stats_analyzer] self.scene.label_source = None self.scene.aoi_uris = None self.pipeline.config.dataset.train_scenes = [self.scene] self.pipeline.config.dataset.validation_scenes = [self.scene] self.pipeline.config.dataset.test_scenes = None self.pipeline.config.train_uri = bundle_dir if channel_order is not None: self.scene.raster_source.channel_order = channel_order