示例#1
0
    def __init__(self, name, task):
        super().__init__(name, task)

        self.attention_model = Attention(input_shape=self.input_shape,
                                         num_rotations=1,
                                         preprocess=self.preprocess)
        self.transport_model = Transport(input_shape=self.input_shape,
                                         num_rotations=self.num_rotations,
                                         crop_size=self.crop_size,
                                         preprocess=self.preprocess,
                                         per_pixel_loss=False,
                                         six_dof=False)

        self.rpz_model = Transport(input_shape=self.input_shape,
                                   num_rotations=self.num_rotations,
                                   crop_size=self.crop_size,
                                   preprocess=self.preprocess,
                                   per_pixel_loss=False,
                                   six_dof=True)

        self.transport_model.set_bounds_pixel_size(self.bounds,
                                                   self.pixel_size)
        self.rpz_model.set_bounds_pixel_size(self.bounds, self.pixel_size)

        self.six_dof = True

        self.p0_pixel_error = tf.keras.metrics.Mean(name='p0_pixel_error')
        self.p1_pixel_error = tf.keras.metrics.Mean(name='p1_pixel_error')
        self.p0_theta_error = tf.keras.metrics.Mean(name='p0_theta_error')
        self.p1_theta_error = tf.keras.metrics.Mean(name='p1_theta_error')
        self.metrics = [
            self.p0_pixel_error, self.p1_pixel_error, self.p0_theta_error,
            self.p1_theta_error
        ]
    def __init__(self, name, task, n_rotations=36):
        super().__init__(name, task, n_rotations)

        self.attention = Attention(in_shape=self.in_shape,
                                   n_rotations=1,
                                   preprocess=utils.preprocess)
        self.transport = Transport(in_shape=self.in_shape,
                                   n_rotations=self.n_rotations,
                                   crop_size=self.crop_size,
                                   preprocess=utils.preprocess)
示例#3
0
    def __init__(self, name, task):
        super().__init__(name, task)

        self.attention_model = Attention(input_shape=self.input_shape,
                                         num_rotations=1,
                                         preprocess=self.preprocess)
        self.transport_model = Transport(input_shape=self.input_shape,
                                         num_rotations=self.num_rotations,
                                         crop_size=self.crop_size,
                                         preprocess=self.preprocess,
                                         per_pixel_loss=True)
    def __init__(self, name, task, num_rotations=24):
        super().__init__(name, task, num_rotations, use_goal_image=True, attn_no_targ=False)

        # We stack the goal image for both modules.
        in_shape = (self.input_shape[0], self.input_shape[1], int(self.input_shape[2] * 2))

        self.attention_model = Attention(input_shape=in_shape,
                                         num_rotations=1,
                                         preprocess=self.preprocess)
        self.transport_model = Transport(input_shape=in_shape,
                                         num_rotations=self.num_rotations,
                                         crop_size=self.crop_size,
                                         preprocess=self.preprocess,
                                         per_pixel_loss=False,  # NOTE: see docs above.
                                         use_goal_image=True)
    def __init__(self, name, task, n_rotations=36):
        super().__init__(name, task, n_rotations)

        # Stack the goal image for the vanilla Transport module.
        t_shape = (self.in_shape[0], self.in_shape[1],
                   int(self.in_shape[2] * 2))

        self.attention = Attention(in_shape=self.in_shape,
                                   n_rotations=1,
                                   preprocess=utils.preprocess)
        self.transport = Transport(in_shape=t_shape,
                                   n_rotations=self.n_rotations,
                                   crop_size=self.crop_size,
                                   preprocess=utils.preprocess,
                                   per_pixel_loss=False,
                                   use_goal_image=True)
class Transporter6dAgent(TransporterAgent):
  """6D Transporter variant."""

  def __init__(self, name, task):
    super().__init__(name, task)

    self.attention_model = Attention(
        input_shape=self.input_shape,
        num_rotations=1,
        preprocess=self.preprocess)
    self.transport_model = Transport(
        input_shape=self.input_shape,
        num_rotations=self.num_rotations,
        crop_size=self.crop_size,
        preprocess=self.preprocess,
        per_pixel_loss=False,
        six_dof=False)

    self.rpz_model = Transport(
        input_shape=self.input_shape,
        num_rotations=self.num_rotations,
        crop_size=self.crop_size,
        preprocess=self.preprocess,
        per_pixel_loss=False,
        six_dof=True)

    self.transport_model.set_bounds_pixel_size(self.bounds, self.pixel_size)
    self.rpz_model.set_bounds_pixel_size(self.bounds, self.pixel_size)

    self.six_dof = True

    self.p0_pixel_error = tf.keras.metrics.Mean(name='p0_pixel_error')
    self.p1_pixel_error = tf.keras.metrics.Mean(name='p1_pixel_error')
    self.p0_theta_error = tf.keras.metrics.Mean(name='p0_theta_error')
    self.p1_theta_error = tf.keras.metrics.Mean(name='p1_theta_error')
    self.metrics = [
        self.p0_pixel_error, self.p1_pixel_error, self.p0_theta_error,
        self.p1_theta_error
    ]

  def get_six_dof(self,
                  transform_params,
                  heightmap,
                  pose0,
                  pose1,
                  augment=True):
    """Adjust SE(3) poses via the in-plane SE(2) augmentation transform."""
    debug_visualize = False

    p1_position, p1_rotation = pose1[0], pose1[1]
    p0_position, p0_rotation = pose0[0], pose0[1]

    if debug_visualize:
      self.vis = utils.create_visualizer()
      self.transport_model.vis = self.vis

    if augment:
      t_world_center, t_world_centernew = utils.get_se3_from_image_transform(
          *transform_params, heightmap, self.bounds, self.pixel_size)

      if debug_visualize:
        label = 't_world_center'
        utils.make_frame(self.vis, label, h=0.05, radius=0.0012, o=1.0)
        self.vis[label].set_transform(t_world_center)

        label = 't_world_centernew'
        utils.make_frame(self.vis, label, h=0.05, radius=0.0012, o=1.0)
        self.vis[label].set_transform(t_world_centernew)

      t_worldnew_world = t_world_centernew @ np.linalg.inv(t_world_center)
    else:
      t_worldnew_world = np.eye(4)

    p1_quat_wxyz = (p1_rotation[3], p1_rotation[0], p1_rotation[1],
                    p1_rotation[2])
    t_world_p1 = transformations.quaternion_matrix(p1_quat_wxyz)
    t_world_p1[0:3, 3] = np.array(p1_position)

    t_worldnew_p1 = t_worldnew_world @ t_world_p1

    p0_quat_wxyz = (p0_rotation[3], p0_rotation[0], p0_rotation[1],
                    p0_rotation[2])
    t_world_p0 = transformations.quaternion_matrix(p0_quat_wxyz)
    t_world_p0[0:3, 3] = np.array(p0_position)
    t_worldnew_p0 = t_worldnew_world @ t_world_p0

    if debug_visualize:
      label = 't_worldnew_p1'
      utils.make_frame(self.vis, label, h=0.05, radius=0.0012, o=1.0)
      self.vis[label].set_transform(t_worldnew_p1)

      label = 't_world_p1'
      utils.make_frame(self.vis, label, h=0.05, radius=0.0012, o=1.0)
      self.vis[label].set_transform(t_world_p1)

      label = 't_worldnew_p0-0thetaoriginally'
      utils.make_frame(self.vis, label, h=0.05, radius=0.0021, o=1.0)
      self.vis[label].set_transform(t_worldnew_p0)

    # PICK FRAME, using 0 rotation due to suction rotational symmetry
    t_worldnew_p0theta0 = t_worldnew_p0 * 1.0
    t_worldnew_p0theta0[0:3, 0:3] = np.eye(3)

    if debug_visualize:
      label = 'PICK'
      utils.make_frame(self.vis, label, h=0.05, radius=0.0021, o=1.0)
      self.vis[label].set_transform(t_worldnew_p0theta0)

    # PLACE FRAME, adjusted for this 0 rotation on pick
    t_p0_p0theta0 = np.linalg.inv(t_worldnew_p0) @ t_worldnew_p0theta0
    t_worldnew_p1theta0 = t_worldnew_p1 @ t_p0_p0theta0

    if debug_visualize:
      label = 'PLACE'
      utils.make_frame(self.vis, label, h=0.05, radius=0.0021, o=1.0)
      self.vis[label].set_transform(t_worldnew_p1theta0)

    # convert the above rotation to euler
    quatwxyz_worldnew_p1theta0 = transformations.quaternion_from_matrix(
        t_worldnew_p1theta0)
    q = quatwxyz_worldnew_p1theta0
    quatxyzw_worldnew_p1theta0 = (q[1], q[2], q[3], q[0])
    p1_rotation = quatxyzw_worldnew_p1theta0
    p1_euler = utils.quatXYZW_to_eulerXYZ(p1_rotation)
    roll = p1_euler[0]
    pitch = p1_euler[1]
    p1_theta = -p1_euler[2]

    p0_theta = 0
    z = p1_position[2]
    return p0_theta, p1_theta, z, roll, pitch

  def get_sample(self, dataset, augment=True):
    (obs, act, _, _), _ = dataset.sample()
    img = self.get_image(obs)

    # Get training labels from data sample.
    p0_xyz, p0_xyzw = act['pose0']
    p1_xyz, p1_xyzw = act['pose1']
    p0 = utils.xyz_to_pix(p0_xyz, self.bounds, self.pix_size)
    p0_theta = -np.float32(utils.quatXYZW_to_eulerXYZ(p0_xyzw)[2])
    p1 = utils.xyz_to_pix(p1_xyz, self.bounds, self.pix_size)
    p1_theta = -np.float32(utils.quatXYZW_to_eulerXYZ(p1_xyzw)[2])
    p1_theta = p1_theta - p0_theta
    p0_theta = 0

    if augment:
      img, _, (p0, p1), transforms = utils.perturb(img, [p0, p1])
      p0_theta, p1_theta, z, roll, pitch = self.get_six_dof(
          transforms, img[:, :, 3], (p0_xyz, p0_xyzw), (p1_xyz, p1_xyzw))

    return img, p0, p0_theta, p1, p1_theta, z, roll, pitch

  def train(self, dataset, num_iter, writer, validation_dataset):
    """Train on dataset for a specific number of iterations.

    Args:
      dataset: a ravens.Dataset.
      num_iter: int, number of iterations to train.
      writer: a TF summary writer (for tensorboard).
      validation_dataset: a ravens.Dataset.
    """

    validation_rate = 200

    for i in range(num_iter):

      tf.keras.backend.set_learning_phase(1)
      _, p0, p0_theta, p1, p1_theta, z, roll, pitch = self.get_sample(
          dataset)

      # Compute training losses.
      loss0 = self.attention_model.train(input_image, p0, p0_theta)

      loss1 = self.transport_model.train(input_image, p0, p1, p1_theta, z, roll,
                                         pitch)

      loss2 = self.rpz_model.train(input_image, p0, p1, p1_theta, z, roll,
                                   pitch)
      del loss2

      with writer.as_default():
        tf.summary.scalar(
            'attention_loss',
            self.attention_model.metric.result(),
            step=self.total_iter + i)

        tf.summary.scalar(
            'transport_loss',
            self.transport_model.metric.result(),
            step=self.total_iter + i)
        tf.summary.scalar(
            'z_loss',
            self.rpz_model.z_metric.result(),
            step=self.total_iter + i)
        tf.summary.scalar(
            'roll_loss',
            self.rpz_model.roll_metric.result(),
            step=self.total_iter + i)
        tf.summary.scalar(
            'pitch_loss',
            self.rpz_model.pitch_metric.result(),
            step=self.total_iter + i)

      print(f'Train Iter: {self.total_iter + i} Loss: {loss0:.4f} {loss1:.4f}')

      if (self.total_iter + i) % validation_rate == 0:
        print('Validating!')
        tf.keras.backend.set_learning_phase(0)
        input_image, p0, p0_theta, p1, p1_theta, z, roll, pitch = self.get_data_batch(
            validation_dataset, augment=False)

        loss1 = self.transport_model.train(
            input_image, p0, p1, p1_theta, z, roll, pitch, validate=True)

        loss2 = self.rpz_model.train(
            input_image, p0, p1, p1_theta, z, roll, pitch, validate=True)

        # compute pixel/theta metrics
        # [metric.reset_states() for metric in self.metrics]
        # for _ in range(30):
        #     obs, act, info = validation_dataset.random_sample()
        #     self.act(obs, act, info, compute_error=True)

        with writer.as_default():
          tf.summary.scalar(
              'val_transport_loss',
              self.transport_model.metric.result(),
              step=self.total_iter + i)
          tf.summary.scalar(
              'val_z_loss',
              self.rpz_model.z_metric.result(),
              step=self.total_iter + i)
          tf.summary.scalar(
              'val_roll_loss',
              self.rpz_model.roll_metric.result(),
              step=self.total_iter + i)
          tf.summary.scalar(
              'val_pitch_loss',
              self.rpz_model.pitch_metric.result(),
              step=self.total_iter + i)

          tf.summary.scalar(
              'p0_pixel_error',
              self.p0_pixel_error.result(),
              step=self.total_iter + i)
          tf.summary.scalar(
              'p1_pixel_error',
              self.p1_pixel_error.result(),
              step=self.total_iter + i)
          tf.summary.scalar(
              'p0_theta_error',
              self.p0_theta_error.result(),
              step=self.total_iter + i)
          tf.summary.scalar(
              'p1_theta_error',
              self.p1_theta_error.result(),
              step=self.total_iter + i)

        tf.keras.backend.set_learning_phase(1)

    self.total_iter += num_iter
    self.save()

  def act(self, obs, info, compute_error=False, gt_act=None):
    """Run inference and return best action given visual observations."""

    # Get heightmap from RGB-D images.
    colormap, heightmap = self.get_heightmap(obs, self.camera_config)

    # Concatenate color with depth images.
    input_image = np.concatenate(
        (colormap, heightmap[Ellipsis, None], heightmap[Ellipsis, None], heightmap[Ellipsis,
                                                                         None]),
        axis=2)

    # Attention model forward pass.
    attention = self.attention_model.forward(input_image)
    argmax = np.argmax(attention)
    argmax = np.unravel_index(argmax, shape=attention.shape)
    p0_pixel = argmax[:2]
    p0_theta = argmax[2] * (2 * np.pi / attention.shape[2])

    # Transport model forward pass.
    transport = self.transport_model.forward(input_image, p0_pixel)
    _, z, roll, pitch = self.rpz_model.forward(input_image, p0_pixel)

    argmax = np.argmax(transport)
    argmax = np.unravel_index(argmax, shape=transport.shape)

    # Index into 3D discrete tensor, grab z, roll, pitch activations
    z_best = z[:, argmax[0], argmax[1], argmax[2]][Ellipsis, None]
    roll_best = roll[:, argmax[0], argmax[1], argmax[2]][Ellipsis, None]
    pitch_best = pitch[:, argmax[0], argmax[1], argmax[2]][Ellipsis, None]

    # Send through regressors for each of z, roll, pitch
    z_best = self.rpz_model.z_regressor(z_best)[0, 0]
    roll_best = self.rpz_model.roll_regressor(roll_best)[0, 0]
    pitch_best = self.rpz_model.pitch_regressor(pitch_best)[0, 0]

    p1_pixel = argmax[:2]
    p1_theta = argmax[2] * (2 * np.pi / transport.shape[2])

    # Pixels to end effector poses.
    p0_position = utils.pix_to_xyz(p0_pixel, heightmap, self.bounds,
                                   self.pixel_size)
    p1_position = utils.pix_to_xyz(p1_pixel, heightmap, self.bounds,
                                   self.pixel_size)

    p1_position = (p1_position[0], p1_position[1], z_best)

    p0_rotation = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta))
    p1_rotation = utils.eulerXYZ_to_quatXYZW(
        (roll_best, pitch_best, -p1_theta))

    if compute_error:
      gt_p0_position, gt_p0_rotation = gt_act['params']['pose0']
      gt_p1_position, gt_p1_rotation = gt_act['params']['pose1']

      gt_p0_pixel = np.array(
          utils.xyz_to_pix(gt_p0_position, self.bounds, self.pixel_size))
      gt_p1_pixel = np.array(
          utils.xyz_to_pix(gt_p1_position, self.bounds, self.pixel_size))

      self.p0_pixel_error(np.linalg.norm(gt_p0_pixel - np.array(p0_pixel)))
      self.p1_pixel_error(np.linalg.norm(gt_p1_pixel - np.array(p1_pixel)))

      gt_p0_theta = -np.float32(
          utils.quatXYZW_to_eulerXYZ(gt_p0_rotation)[2])
      gt_p1_theta = -np.float32(
          utils.quatXYZW_to_eulerXYZ(gt_p1_rotation)[2])

      self.p0_theta_error(
          abs((np.rad2deg(gt_p0_theta - p0_theta) + 180) % 360 - 180))
      self.p1_theta_error(
          abs((np.rad2deg(gt_p1_theta - p1_theta) + 180) % 360 - 180))

      return None

    return {'pose0': (p0_position, p0_rotation),
            'pose1': (p1_position, p1_rotation)}