示例#1
0
    def __init__(
            self,
            config_path: str,
            load_metrics: LoadMetrics,
            max_launch_batch: int = AUTOSCALER_MAX_LAUNCH_BATCH,
            max_concurrent_launches: int = AUTOSCALER_MAX_CONCURRENT_LAUNCHES,
            max_failures: int = AUTOSCALER_MAX_NUM_FAILURES,
            process_runner: Any = subprocess,
            update_interval_s: int = AUTOSCALER_UPDATE_INTERVAL_S,
            prefix_cluster_info: bool = False,
            event_summarizer: Optional[EventSummarizer] = None,
            prom_metrics: Optional[AutoscalerPrometheusMetrics] = None):
        """Create a StandardAutoscaler.

        Args:
        config_path: Path to a Ray Autoscaler YAML.
        load_metrics: Provides metrics for the Ray cluster.
        max_launch_batch: Max number of nodes to launch in one request.
        max_concurrent_launches: Max number of nodes that can be concurrently
            launched. This value and `max_launch_batch` determine the number
            of batches that are used to launch nodes.
        max_failures: Number of failures that the autoscaler will tolerate
            before exiting.
        process_runner: Subprocess-like interface used by the CommandRunner.
        update_interval_s: Seconds between running the autoscaling loop.
        prefix_cluster_info: Whether to add the cluster name to info strings.
        event_summarizer: Utility to consolidate duplicated messages.
        prom_metrics: Prometheus metrics for autoscaler-related operations.
        """

        self.config_path = config_path
        # Prefix each line of info string with cluster name if True
        self.prefix_cluster_info = prefix_cluster_info
        # Keep this before self.reset (self.provider needs to be created
        # exactly once).
        self.provider = None
        # Keep this before self.reset (if an exception occurs in reset
        # then prom_metrics must be instantitiated to increment the
        # exception counter)
        self.prom_metrics = prom_metrics or \
            AutoscalerPrometheusMetrics()
        self.resource_demand_scheduler = None
        self.reset(errors_fatal=True)
        self.head_node_ip = load_metrics.local_ip
        self.load_metrics = load_metrics

        self.max_failures = max_failures
        self.max_launch_batch = max_launch_batch
        self.max_concurrent_launches = max_concurrent_launches
        self.process_runner = process_runner
        self.event_summarizer = event_summarizer or EventSummarizer()

        # Map from node_id to NodeUpdater threads
        self.updaters = {}
        self.num_failed_updates = defaultdict(int)
        self.num_successful_updates = defaultdict(int)
        self.num_failures = 0
        self.last_update_time = 0.0
        self.update_interval_s = update_interval_s

        # Tracks active worker nodes
        self.workers = []
        # Tracks nodes scheduled for termination
        self.nodes_to_terminate = []

        # Disable NodeUpdater threads if true.
        # Should be set to true in situations where another component, such as
        # a Kubernetes operator, is responsible for Ray setup on nodes.
        self.disable_node_updaters = self.config["provider"].get(
            "disable_node_updaters", False)

        # Node launchers
        self.launch_queue = queue.Queue()
        self.pending_launches = ConcurrentCounter()
        max_batches = math.ceil(max_concurrent_launches /
                                float(max_launch_batch))
        for i in range(int(max_batches)):
            node_launcher = NodeLauncher(provider=self.provider,
                                         queue=self.launch_queue,
                                         index=i,
                                         pending=self.pending_launches,
                                         node_types=self.available_node_types,
                                         prom_metrics=self.prom_metrics)
            node_launcher.daemon = True
            node_launcher.start()

        # NodeTracker maintains soft state to track the number of recently
        # failed nodes. It is best effort only.
        self.node_tracker = NodeTracker()

        # Expand local file_mounts to allow ~ in the paths. This can't be done
        # earlier when the config is written since we might be on different
        # platform and the expansion would result in wrong path.
        self.config["file_mounts"] = {
            remote: os.path.expanduser(local)
            for remote, local in self.config["file_mounts"].items()
        }

        for local_path in self.config["file_mounts"].values():
            assert os.path.exists(local_path)
        logger.info("StandardAutoscaler: {}".format(self.config))
示例#2
0
文件: autoscaler.py 项目: zivzone/ray
    def __init__(self,
                 config_path,
                 load_metrics,
                 max_launch_batch=AUTOSCALER_MAX_LAUNCH_BATCH,
                 max_concurrent_launches=AUTOSCALER_MAX_CONCURRENT_LAUNCHES,
                 max_failures=AUTOSCALER_MAX_NUM_FAILURES,
                 process_runner=subprocess,
                 update_interval_s=AUTOSCALER_UPDATE_INTERVAL_S,
                 prefix_cluster_info=False,
                 event_summarizer=None):
        self.config_path = config_path
        # Prefix each line of info string with cluster name if True
        self.prefix_cluster_info = prefix_cluster_info
        # Keep this before self.reset (self.provider needs to be created
        # exactly once).
        self.provider = None
        self.resource_demand_scheduler = None
        self.reset(errors_fatal=True)
        self.head_node_ip = load_metrics.local_ip
        self.load_metrics = load_metrics

        self.max_failures = max_failures
        self.max_launch_batch = max_launch_batch
        self.max_concurrent_launches = max_concurrent_launches
        self.process_runner = process_runner
        self.event_summarizer = event_summarizer or EventSummarizer()

        # Map from node_id to NodeUpdater processes
        self.updaters = {}
        self.num_failed_updates = defaultdict(int)
        self.num_successful_updates = defaultdict(int)
        self.num_failures = 0
        self.last_update_time = 0.0
        self.update_interval_s = update_interval_s

        # Node launchers
        self.launch_queue = queue.Queue()
        self.pending_launches = ConcurrentCounter()
        max_batches = math.ceil(max_concurrent_launches /
                                float(max_launch_batch))
        for i in range(int(max_batches)):
            node_launcher = NodeLauncher(
                provider=self.provider,
                queue=self.launch_queue,
                index=i,
                pending=self.pending_launches,
                node_types=self.available_node_types,
            )
            node_launcher.daemon = True
            node_launcher.start()

        # NodeTracker maintains soft state to track the number of recently
        # failed nodes. It is best effort only.
        self.node_tracker = NodeTracker()

        # Expand local file_mounts to allow ~ in the paths. This can't be done
        # earlier when the config is written since we might be on different
        # platform and the expansion would result in wrong path.
        self.config["file_mounts"] = {
            remote: os.path.expanduser(local)
            for remote, local in self.config["file_mounts"].items()
        }

        for local_path in self.config["file_mounts"].values():
            assert os.path.exists(local_path)

        logger.info("StandardAutoscaler: {}".format(self.config))
示例#3
0
class StandardAutoscaler:
    """The autoscaling control loop for a Ray cluster.

    There are two ways to start an autoscaling cluster: manually by running
    `ray start --head --autoscaling-config=/path/to/config.yaml` on a instance
    that has permission to launch other instances, or you can also use `ray up
    /path/to/config.yaml` from your laptop, which will configure the right
    AWS/Cloud roles automatically. See the documentation for a full definition
    of autoscaling behavior:
    https://docs.ray.io/en/master/cluster/autoscaling.html
    StandardAutoscaler's `update` method is periodically called in
    `monitor.py`'s monitoring loop.

    StandardAutoscaler is also used to bootstrap clusters (by adding workers
    until the cluster size that can handle the resource demand is met).
    """
    def __init__(
            self,
            config_path: str,
            load_metrics: LoadMetrics,
            max_launch_batch: int = AUTOSCALER_MAX_LAUNCH_BATCH,
            max_concurrent_launches: int = AUTOSCALER_MAX_CONCURRENT_LAUNCHES,
            max_failures: int = AUTOSCALER_MAX_NUM_FAILURES,
            process_runner: Any = subprocess,
            update_interval_s: int = AUTOSCALER_UPDATE_INTERVAL_S,
            prefix_cluster_info: bool = False,
            event_summarizer: Optional[EventSummarizer] = None,
            prom_metrics: Optional[AutoscalerPrometheusMetrics] = None):
        """Create a StandardAutoscaler.

        Args:
        config_path: Path to a Ray Autoscaler YAML.
        load_metrics: Provides metrics for the Ray cluster.
        max_launch_batch: Max number of nodes to launch in one request.
        max_concurrent_launches: Max number of nodes that can be concurrently
            launched. This value and `max_launch_batch` determine the number
            of batches that are used to launch nodes.
        max_failures: Number of failures that the autoscaler will tolerate
            before exiting.
        process_runner: Subprocess-like interface used by the CommandRunner.
        update_interval_s: Seconds between running the autoscaling loop.
        prefix_cluster_info: Whether to add the cluster name to info strings.
        event_summarizer: Utility to consolidate duplicated messages.
        prom_metrics: Prometheus metrics for autoscaler-related operations.
        """

        self.config_path = config_path
        # Prefix each line of info string with cluster name if True
        self.prefix_cluster_info = prefix_cluster_info
        # Keep this before self.reset (self.provider needs to be created
        # exactly once).
        self.provider = None
        # Keep this before self.reset (if an exception occurs in reset
        # then prom_metrics must be instantitiated to increment the
        # exception counter)
        self.prom_metrics = prom_metrics or \
            AutoscalerPrometheusMetrics()
        self.resource_demand_scheduler = None
        self.reset(errors_fatal=True)
        self.head_node_ip = load_metrics.local_ip
        self.load_metrics = load_metrics

        self.max_failures = max_failures
        self.max_launch_batch = max_launch_batch
        self.max_concurrent_launches = max_concurrent_launches
        self.process_runner = process_runner
        self.event_summarizer = event_summarizer or EventSummarizer()

        # Map from node_id to NodeUpdater threads
        self.updaters = {}
        self.num_failed_updates = defaultdict(int)
        self.num_successful_updates = defaultdict(int)
        self.num_failures = 0
        self.last_update_time = 0.0
        self.update_interval_s = update_interval_s

        # Tracks active worker nodes
        self.workers = []
        # Tracks nodes scheduled for termination
        self.nodes_to_terminate = []

        # Disable NodeUpdater threads if true.
        # Should be set to true in situations where another component, such as
        # a Kubernetes operator, is responsible for Ray setup on nodes.
        self.disable_node_updaters = self.config["provider"].get(
            "disable_node_updaters", False)

        # Node launchers
        self.launch_queue = queue.Queue()
        self.pending_launches = ConcurrentCounter()
        max_batches = math.ceil(max_concurrent_launches /
                                float(max_launch_batch))
        for i in range(int(max_batches)):
            node_launcher = NodeLauncher(provider=self.provider,
                                         queue=self.launch_queue,
                                         index=i,
                                         pending=self.pending_launches,
                                         node_types=self.available_node_types,
                                         prom_metrics=self.prom_metrics)
            node_launcher.daemon = True
            node_launcher.start()

        # NodeTracker maintains soft state to track the number of recently
        # failed nodes. It is best effort only.
        self.node_tracker = NodeTracker()

        # Expand local file_mounts to allow ~ in the paths. This can't be done
        # earlier when the config is written since we might be on different
        # platform and the expansion would result in wrong path.
        self.config["file_mounts"] = {
            remote: os.path.expanduser(local)
            for remote, local in self.config["file_mounts"].items()
        }

        for local_path in self.config["file_mounts"].values():
            assert os.path.exists(local_path)
        logger.info("StandardAutoscaler: {}".format(self.config))

    def update(self):
        try:
            self.reset(errors_fatal=False)
            self._update()
        except Exception as e:
            self.prom_metrics.update_loop_exceptions.inc()
            logger.exception("StandardAutoscaler: "
                             "Error during autoscaling.")
            # Don't abort the autoscaler if the K8s API server is down.
            # https://github.com/ray-project/ray/issues/12255
            is_k8s_connection_error = (self.config["provider"]["type"]
                                       == "kubernetes"
                                       and isinstance(e, MaxRetryError))
            if not is_k8s_connection_error:
                self.num_failures += 1
            if self.num_failures > self.max_failures:
                logger.critical("StandardAutoscaler: "
                                "Too many errors, abort.")
                raise e

    def _update(self):
        now = time.time()
        # Throttle autoscaling updates to this interval to avoid exceeding
        # rate limits on API calls.
        if now - self.last_update_time < self.update_interval_s:
            return

        self.last_update_time = now
        self.update_worker_list()

        self.load_metrics.prune_active_ips([
            self.provider.internal_ip(node_id) for node_id in self.all_workers
        ])

        self.terminate_nodes_to_enforce_config_constraints(now)

        self.launch_required_nodes()

        if self.disable_node_updaters:
            self.terminate_unhealthy_nodes(now)
        else:
            self.process_completed_updates()
            self.update_nodes()
            self.attempt_to_recover_unhealthy_nodes(now)
            self.set_prometheus_updater_data()

        logger.info(self.info_string())
        legacy_log_info_string(self, self.workers)

    def terminate_nodes_to_enforce_config_constraints(self, now: float):
        """Terminates nodes to enforce constraints defined by the autoscaling
        config.

        (1) Terminates nodes in excess of `max_workers`.
        (2) Terminates nodes idle for longer than `idle_timeout_minutes`.
        (3) Terminates outdated nodes,
                namely nodes whose configs don't match `node_config` for the
                relevant node type.

        Avoids terminating non-outdated nodes required by
        autoscaler.sdk.request_resources().
        """
        last_used = self.load_metrics.last_used_time_by_ip
        horizon = now - (60 * self.config["idle_timeout_minutes"])

        # Sort based on last used to make sure to keep min_workers that
        # were most recently used. Otherwise, _keep_min_workers_of_node_type
        # might keep a node that should be terminated.
        sorted_node_ids = self._sort_based_on_last_used(
            self.workers, last_used)

        # Don't terminate nodes needed by request_resources()
        nodes_not_allowed_to_terminate: FrozenSet[NodeID] = {}
        if self.load_metrics.get_resource_requests():
            nodes_not_allowed_to_terminate = \
                self._get_nodes_needed_for_request_resources(sorted_node_ids)

        # Tracks counts of nodes we intend to keep for each node type.
        node_type_counts = defaultdict(int)

        def keep_node(node_id: NodeID) -> None:
            # Update per-type counts.
            tags = self.provider.node_tags(node_id)
            if TAG_RAY_USER_NODE_TYPE in tags:
                node_type = tags[TAG_RAY_USER_NODE_TYPE]
                node_type_counts[node_type] += 1

        # Nodes that we could terminate, if needed.
        nodes_we_could_terminate: List[NodeID] = []

        for node_id in sorted_node_ids:
            # Make sure to not kill idle node types if the number of workers
            # of that type is lower/equal to the min_workers of that type
            # or it is needed for request_resources().
            should_keep_or_terminate, reason = self._keep_worker_of_node_type(
                node_id, node_type_counts)
            if should_keep_or_terminate == KeepOrTerminate.terminate:
                self.schedule_node_termination(node_id, reason, logger.info)
                continue
            if ((should_keep_or_terminate == KeepOrTerminate.keep
                 or node_id in nodes_not_allowed_to_terminate)
                    and self.launch_config_ok(node_id)):
                keep_node(node_id)
                continue

            node_ip = self.provider.internal_ip(node_id)
            if node_ip in last_used and last_used[node_ip] < horizon:
                self.schedule_node_termination(node_id, "idle", logger.info)
            elif not self.launch_config_ok(node_id):
                self.schedule_node_termination(node_id, "outdated",
                                               logger.info)
            else:
                keep_node(node_id)
                nodes_we_could_terminate.append(node_id)

        # Terminate nodes if there are too many
        num_extra_nodes_to_terminate = (len(self.workers) -
                                        len(self.nodes_to_terminate) -
                                        self.config["max_workers"])

        if num_extra_nodes_to_terminate > len(nodes_we_could_terminate):
            logger.warning(
                "StandardAutoscaler: trying to terminate "
                f"{num_extra_nodes_to_terminate} nodes, while only "
                f"{len(nodes_we_could_terminate)} are safe to terminate."
                " Inconsistent config is likely.")
            num_extra_nodes_to_terminate = len(nodes_we_could_terminate)

        # If num_extra_nodes_to_terminate is negative or zero,
        # we would have less than max_workers nodes after terminating
        # nodes_to_terminate and we do not need to terminate anything else.
        if num_extra_nodes_to_terminate > 0:
            extra_nodes_to_terminate = nodes_we_could_terminate[
                -num_extra_nodes_to_terminate:]
            for node_id in extra_nodes_to_terminate:
                self.schedule_node_termination(node_id, "max workers",
                                               logger.info)

        self.terminate_scheduled_nodes()

    def schedule_node_termination(self, node_id: NodeID,
                                  reason_opt: Optional[str],
                                  logger_method: Callable) -> None:
        if reason_opt is None:
            raise Exception("reason should be not None.")
        reason: str = reason_opt
        node_ip = self.provider.internal_ip(node_id)
        # Log, record an event, and add node_id to nodes_to_terminate.
        logger_method("StandardAutoscaler: "
                      f"Terminating the node with id {node_id}"
                      f" and ip {node_ip}."
                      f" ({reason})")
        self.event_summarizer.add("Removing {} nodes of type " +
                                  self._get_node_type(node_id) +
                                  " ({}).".format(reason),
                                  quantity=1,
                                  aggregate=operator.add)
        self.nodes_to_terminate.append(node_id)

    def terminate_scheduled_nodes(self):
        """Terminate scheduled nodes and clean associated autoscaler state."""
        if not self.nodes_to_terminate:
            return
        self.provider.terminate_nodes(self.nodes_to_terminate)
        for node in self.nodes_to_terminate:
            self.node_tracker.untrack(node)
            self.prom_metrics.stopped_nodes.inc()

        self.nodes_to_terminate = []
        self.update_worker_list()

    def launch_required_nodes(self):
        to_launch = self.resource_demand_scheduler.get_nodes_to_launch(
            self.provider.non_terminated_nodes(tag_filters={}),
            self.pending_launches.breakdown(),
            self.load_metrics.get_resource_demand_vector(),
            self.load_metrics.get_resource_utilization(),
            self.load_metrics.get_pending_placement_groups(),
            self.load_metrics.get_static_node_resources_by_ip(),
            ensure_min_cluster_size=self.load_metrics.get_resource_requests())
        if to_launch:
            for node_type, count in to_launch.items():
                self.launch_new_node(count, node_type=node_type)
            self.update_worker_list()

    def update_nodes(self):
        """Run NodeUpdaterThreads to run setup commands, sync files,
        and/or start Ray.
        """
        # Update nodes with out-of-date files.
        # TODO(edoakes): Spawning these threads directly seems to cause
        # problems. They should at a minimum be spawned as daemon threads.
        # See https://github.com/ray-project/ray/pull/5903 for more info.
        T = []
        for node_id, setup_commands, ray_start_commands, docker_config in (
                self.should_update(node_id) for node_id in self.workers):
            if node_id is not None:
                resources = self._node_resources(node_id)
                logger.debug(f"{node_id}: Starting new thread runner.")
                T.append(
                    threading.Thread(target=self.spawn_updater,
                                     args=(node_id, setup_commands,
                                           ray_start_commands, resources,
                                           docker_config)))
        for t in T:
            t.start()
        for t in T:
            t.join()

    def process_completed_updates(self):
        """Clean up completed NodeUpdaterThreads.
        """
        completed_nodes = []
        for node_id, updater in self.updaters.items():
            if not updater.is_alive():
                completed_nodes.append(node_id)
        if completed_nodes:
            failed_nodes = []
            for node_id in completed_nodes:
                updater = self.updaters[node_id]
                if updater.exitcode == 0:
                    self.num_successful_updates[node_id] += 1
                    self.prom_metrics.successful_updates.inc()
                    if updater.for_recovery:
                        self.prom_metrics.successful_recoveries.inc()
                    if updater.update_time:
                        self.prom_metrics.worker_update_time.observe(
                            updater.update_time)
                    # Mark the node as active to prevent the node recovery
                    # logic immediately trying to restart Ray on the new node.
                    self.load_metrics.mark_active(
                        self.provider.internal_ip(node_id))
                else:
                    failed_nodes.append(node_id)
                    self.num_failed_updates[node_id] += 1
                    self.prom_metrics.failed_updates.inc()
                    if updater.for_recovery:
                        self.prom_metrics.failed_recoveries.inc()
                    self.node_tracker.untrack(node_id)
                del self.updaters[node_id]

            if failed_nodes:
                # Some nodes in failed_nodes may already have been terminated
                # during an update (for being idle after missing a heartbeat).

                # Update the list of non-terminated workers.
                self.update_worker_list()
                for node_id in failed_nodes:
                    # Check if the node has already been terminated.
                    if node_id in self.workers:
                        self.schedule_node_termination(node_id,
                                                       "launch failed",
                                                       logger.error)
                    else:
                        logger.warning(f"StandardAutoscaler: {node_id}:"
                                       " Failed to update node."
                                       " Node has already been terminated.")
                self.terminate_scheduled_nodes()

    def set_prometheus_updater_data(self):
        """Record total number of active NodeUpdaterThreads and how many of
        these are being run to recover nodes.
        """
        self.prom_metrics.updating_nodes.set(len(self.updaters))
        num_recovering = 0
        for updater in self.updaters.values():
            if updater.for_recovery:
                num_recovering += 1
        self.prom_metrics.recovering_nodes.set(num_recovering)

    def _sort_based_on_last_used(self, nodes: List[NodeID],
                                 last_used: Dict[str, float]) -> List[NodeID]:
        """Sort the nodes based on the last time they were used.

        The first item in the return list is the most recently used.
        """
        last_used_copy = copy.deepcopy(last_used)
        # Add the unconnected nodes as the least recently used (the end of
        # list). This prioritizes connected nodes.
        least_recently_used = -1

        def last_time_used(node_id: NodeID):
            node_ip = self.provider.internal_ip(node_id)
            if node_ip not in last_used_copy:
                return least_recently_used
            else:
                return last_used_copy[node_ip]

        return sorted(nodes, key=last_time_used, reverse=True)

    def _get_nodes_needed_for_request_resources(
            self, sorted_node_ids: List[NodeID]) -> FrozenSet[NodeID]:
        # TODO(ameer): try merging this with resource_demand_scheduler
        # code responsible for adding nodes for request_resources().
        """Returns the nodes NOT allowed to terminate due to request_resources().

        Args:
            sorted_node_ids: the node ids sorted based on last used (LRU last).

        Returns:
            FrozenSet[NodeID]: a set of nodes (node ids) that
            we should NOT terminate.
        """
        nodes_not_allowed_to_terminate: Set[NodeID] = set()
        head_node_resources: ResourceDict = copy.deepcopy(
            self.available_node_types[
                self.config["head_node_type"]]["resources"])
        if not head_node_resources:
            # Legacy yaml might include {} in the resources field.
            # TODO(ameer): this is somewhat duplicated in
            # resource_demand_scheduler.py.
            head_id: List[NodeID] = self.provider.non_terminated_nodes(
                {TAG_RAY_NODE_KIND: NODE_KIND_HEAD})
            if head_id:
                head_ip = self.provider.internal_ip(head_id[0])
                static_nodes: Dict[
                    NodeIP,
                    ResourceDict] = \
                    self.load_metrics.get_static_node_resources_by_ip()
                head_node_resources = static_nodes.get(head_ip, {})
            else:
                head_node_resources = {}

        max_node_resources: List[ResourceDict] = [head_node_resources]
        resource_demand_vector_worker_node_ids = []
        # Get max resources on all the non terminated nodes.
        for node_id in sorted_node_ids:
            tags = self.provider.node_tags(node_id)
            if TAG_RAY_USER_NODE_TYPE in tags:
                node_type = tags[TAG_RAY_USER_NODE_TYPE]
                node_resources: ResourceDict = copy.deepcopy(
                    self.available_node_types[node_type]["resources"])
                if not node_resources:
                    # Legacy yaml might include {} in the resources field.
                    static_nodes: Dict[
                        NodeIP,
                        ResourceDict] = \
                            self.load_metrics.get_static_node_resources_by_ip()
                    node_ip = self.provider.internal_ip(node_id)
                    node_resources = static_nodes.get(node_ip, {})
                max_node_resources.append(node_resources)
                resource_demand_vector_worker_node_ids.append(node_id)
        # Since it is sorted based on last used, we "keep" nodes that are
        # most recently used when we binpack. We assume get_bin_pack_residual
        # is following the given order here.
        used_resource_requests: List[ResourceDict]
        _, used_resource_requests = \
            get_bin_pack_residual(max_node_resources,
                                  self.load_metrics.get_resource_requests())
        # Remove the first entry (the head node).
        max_node_resources.pop(0)
        # Remove the first entry (the head node).
        used_resource_requests.pop(0)
        for i, node_id in enumerate(resource_demand_vector_worker_node_ids):
            if used_resource_requests[i] == max_node_resources[i] \
                    and max_node_resources[i]:
                # No resources of the node were needed for request_resources().
                # max_node_resources[i] is an empty dict for legacy yamls
                # before the node is connected.
                pass
            else:
                nodes_not_allowed_to_terminate.add(node_id)
        return frozenset(nodes_not_allowed_to_terminate)

    def _keep_worker_of_node_type(
        self, node_id: NodeID, node_type_counts: Dict[NodeType, int]
    ) -> Tuple[KeepOrTerminate, Optional[str]]:
        """Determines if a worker should be kept based on the min_workers
        and max_workers constraint of the worker's node_type.

        Returns KeepOrTerminate.keep when both of the following hold:
        (a) The worker's node_type is present among the keys of the current
            config's available_node_types dict.
        (b) Deleting the node would violate the min_workers constraint for that
            worker's node_type.

        Returns KeepOrTerminate.terminate when both the following hold:
        (a) The worker's node_type is not present among the keys of the current
            config's available_node_types dict.
        (b) Keeping the node would violate the max_workers constraint for that
            worker's node_type.

        Return KeepOrTerminate.decide_later otherwise.


        Args:
            node_type_counts(Dict[NodeType, int]): The non_terminated node
                types counted so far.
        Returns:
            KeepOrTerminate: keep if the node should be kept, terminate if the
            node should be terminated, decide_later if we are allowed
            to terminate it, but do not have to.
            Optional[str]: reason for termination. Not None on
            KeepOrTerminate.terminate, None otherwise.
        """
        tags = self.provider.node_tags(node_id)
        if TAG_RAY_USER_NODE_TYPE in tags:
            node_type = tags[TAG_RAY_USER_NODE_TYPE]

            min_workers = self.available_node_types.get(node_type, {}).get(
                "min_workers", 0)
            max_workers = self.available_node_types.get(node_type, {}).get(
                "max_workers", 0)
            if node_type not in self.available_node_types:
                # The node type has been deleted from the cluster config.
                # Allow terminating it if needed.
                available_node_types = list(self.available_node_types.keys())
                return (KeepOrTerminate.terminate,
                        f"not in available_node_types: {available_node_types}")
            new_count = node_type_counts[node_type] + 1
            if new_count <= min(min_workers, max_workers):
                return KeepOrTerminate.keep, None
            if new_count > max_workers:
                return KeepOrTerminate.terminate, "max_workers_per_type"

        return KeepOrTerminate.decide_later, None

    def _node_resources(self, node_id):
        node_type = self.provider.node_tags(node_id).get(
            TAG_RAY_USER_NODE_TYPE)
        if self.available_node_types:
            return self.available_node_types.get(node_type,
                                                 {}).get("resources", {})
        else:
            return {}

    def reset(self, errors_fatal=False):
        sync_continuously = False
        if hasattr(self, "config"):
            sync_continuously = self.config.get(
                "file_mounts_sync_continuously", False)
        try:
            with open(self.config_path) as f:
                new_config = yaml.safe_load(f.read())
            if new_config != getattr(self, "config", None):
                try:
                    validate_config(new_config)
                except Exception as e:
                    self.prom_metrics.config_validation_exceptions.inc()
                    logger.debug(
                        "Cluster config validation failed. The version of "
                        "the ray CLI you launched this cluster with may "
                        "be higher than the version of ray being run on "
                        "the cluster. Some new features may not be "
                        "available until you upgrade ray on your cluster.",
                        exc_info=e)
            (new_runtime_hash,
             new_file_mounts_contents_hash) = hash_runtime_conf(
                 new_config["file_mounts"],
                 new_config["cluster_synced_files"],
                 [
                     new_config["worker_setup_commands"],
                     new_config["worker_start_ray_commands"],
                 ],
                 generate_file_mounts_contents_hash=sync_continuously,
             )
            self.config = new_config
            self.runtime_hash = new_runtime_hash
            self.file_mounts_contents_hash = new_file_mounts_contents_hash
            if not self.provider:
                self.provider = _get_node_provider(self.config["provider"],
                                                   self.config["cluster_name"])

            # If using the LocalNodeProvider, make sure the head node is marked
            # non-terminated.
            if isinstance(self.provider, LocalNodeProvider):
                record_local_head_state_if_needed(self.provider)

            self.available_node_types = self.config["available_node_types"]
            upscaling_speed = self.config.get("upscaling_speed")
            aggressive = self.config.get("autoscaling_mode") == "aggressive"
            target_utilization_fraction = self.config.get(
                "target_utilization_fraction")
            if upscaling_speed:
                upscaling_speed = float(upscaling_speed)
            # TODO(ameer): consider adding (if users ask) an option of
            # initial_upscaling_num_workers.
            elif aggressive:
                upscaling_speed = 99999
                logger.warning(
                    "Legacy aggressive autoscaling mode "
                    "detected. Replacing it by setting upscaling_speed to "
                    "99999.")
            elif target_utilization_fraction:
                upscaling_speed = (
                    1 / max(target_utilization_fraction, 0.001) - 1)
                logger.warning(
                    "Legacy target_utilization_fraction config "
                    "detected. Replacing it by setting upscaling_speed to " +
                    "1 / target_utilization_fraction - 1.")
            else:
                upscaling_speed = 1.0
            if self.resource_demand_scheduler:
                # The node types are autofilled internally for legacy yamls,
                # overwriting the class will remove the inferred node resources
                # for legacy yamls.
                self.resource_demand_scheduler.reset_config(
                    self.provider, self.available_node_types,
                    self.config["max_workers"], self.config["head_node_type"],
                    upscaling_speed)
            else:
                self.resource_demand_scheduler = ResourceDemandScheduler(
                    self.provider, self.available_node_types,
                    self.config["max_workers"], self.config["head_node_type"],
                    upscaling_speed)

        except Exception as e:
            self.prom_metrics.reset_exceptions.inc()
            if errors_fatal:
                raise e
            else:
                logger.exception("StandardAutoscaler: "
                                 "Error parsing config.")

    def launch_config_ok(self, node_id):
        node_tags = self.provider.node_tags(node_id)
        tag_launch_conf = node_tags.get(TAG_RAY_LAUNCH_CONFIG)
        node_type = node_tags.get(TAG_RAY_USER_NODE_TYPE)
        if node_type not in self.available_node_types:
            # The node type has been deleted from the cluster config.
            # Don't keep the node.
            return False

        # The `worker_nodes` field is deprecated in favor of per-node-type
        # node_configs. We allow it for backwards-compatibility.
        launch_config = copy.deepcopy(self.config.get("worker_nodes", {}))
        if node_type:
            launch_config.update(
                self.config["available_node_types"][node_type]["node_config"])
        calculated_launch_hash = hash_launch_conf(launch_config,
                                                  self.config["auth"])

        if calculated_launch_hash != tag_launch_conf:
            return False
        return True

    def files_up_to_date(self, node_id):
        node_tags = self.provider.node_tags(node_id)
        applied_config_hash = node_tags.get(TAG_RAY_RUNTIME_CONFIG)
        applied_file_mounts_contents_hash = node_tags.get(
            TAG_RAY_FILE_MOUNTS_CONTENTS)
        if (applied_config_hash != self.runtime_hash
                or (self.file_mounts_contents_hash is not None
                    and self.file_mounts_contents_hash !=
                    applied_file_mounts_contents_hash)):
            logger.info("StandardAutoscaler: "
                        "{}: Runtime state is ({},{}), want ({},{})".format(
                            node_id, applied_config_hash,
                            applied_file_mounts_contents_hash,
                            self.runtime_hash, self.file_mounts_contents_hash))
            return False
        return True

    def heartbeat_on_time(self, node_id: NodeID, now: float) -> bool:
        """Determine whether we've received a heartbeat from a node within the
        last AUTOSCALER_HEARTBEAT_TIMEOUT_S seconds.
        """
        key = self.provider.internal_ip(node_id)

        if key in self.load_metrics.last_heartbeat_time_by_ip:
            last_heartbeat_time = self.load_metrics.last_heartbeat_time_by_ip[
                key]
            delta = now - last_heartbeat_time
            if delta < AUTOSCALER_HEARTBEAT_TIMEOUT_S:
                return True
        return False

    def terminate_unhealthy_nodes(self, now: float):
        """Terminated nodes for which we haven't received a heartbeat on time.
        These nodes are subsequently terminated.
        """
        for node_id in self.workers:
            node_status = self.provider.node_tags(node_id)[TAG_RAY_NODE_STATUS]
            # We're not responsible for taking down
            # nodes with pending or failed status:
            if not node_status == STATUS_UP_TO_DATE:
                continue
            # This node is up-to-date. If it hasn't had the chance to produce
            # a heartbeat, fake the heartbeat now (see logic for completed node
            # updaters).
            ip = self.provider.internal_ip(node_id)
            if ip not in self.load_metrics.last_heartbeat_time_by_ip:
                self.load_metrics.mark_active(ip)
            # Heartbeat indicates node is healthy:
            if self.heartbeat_on_time(node_id, now):
                continue
            self.schedule_node_termination(node_id, "lost contact with raylet",
                                           logger.warning)
        self.terminate_scheduled_nodes()

    def attempt_to_recover_unhealthy_nodes(self, now):
        for node_id in self.workers:
            self.recover_if_needed(node_id, now)

    def recover_if_needed(self, node_id, now):
        if not self.can_update(node_id):
            return
        if self.heartbeat_on_time(node_id, now):
            return

        logger.warning("StandardAutoscaler: "
                       "{}: No recent heartbeat, "
                       "restarting Ray to recover...".format(node_id))
        self.event_summarizer.add("Restarting {} nodes of type " +
                                  self._get_node_type(node_id) +
                                  " (lost contact with raylet).",
                                  quantity=1,
                                  aggregate=operator.add)
        updater = NodeUpdaterThread(
            node_id=node_id,
            provider_config=self.config["provider"],
            provider=self.provider,
            auth_config=self.config["auth"],
            cluster_name=self.config["cluster_name"],
            file_mounts={},
            initialization_commands=[],
            setup_commands=[],
            ray_start_commands=with_head_node_ip(
                self.config["worker_start_ray_commands"], self.head_node_ip),
            runtime_hash=self.runtime_hash,
            file_mounts_contents_hash=self.file_mounts_contents_hash,
            process_runner=self.process_runner,
            use_internal_ip=True,
            is_head_node=False,
            docker_config=self.config.get("docker"),
            node_resources=self._node_resources(node_id),
            for_recovery=True)
        updater.start()
        self.updaters[node_id] = updater

    def _get_node_type(self, node_id: str) -> str:
        node_tags = self.provider.node_tags(node_id)
        if TAG_RAY_USER_NODE_TYPE in node_tags:
            return node_tags[TAG_RAY_USER_NODE_TYPE]
        else:
            return "unknown_node_type"

    def _get_node_type_specific_fields(self, node_id: str,
                                       fields_key: str) -> Any:
        fields = self.config[fields_key]
        node_tags = self.provider.node_tags(node_id)
        if TAG_RAY_USER_NODE_TYPE in node_tags:
            node_type = node_tags[TAG_RAY_USER_NODE_TYPE]
            if node_type not in self.available_node_types:
                raise ValueError(f"Unknown node type tag: {node_type}.")
            node_specific_config = self.available_node_types[node_type]
            if fields_key in node_specific_config:
                fields = node_specific_config[fields_key]
        return fields

    def _get_node_specific_docker_config(self, node_id):
        if "docker" not in self.config:
            return {}
        docker_config = copy.deepcopy(self.config.get("docker", {}))
        node_specific_docker = self._get_node_type_specific_fields(
            node_id, "docker")
        docker_config.update(node_specific_docker)
        return docker_config

    def should_update(self, node_id):
        if not self.can_update(node_id):
            return UpdateInstructions(None, None, None, None)  # no update

        status = self.provider.node_tags(node_id).get(TAG_RAY_NODE_STATUS)
        if status == STATUS_UP_TO_DATE and self.files_up_to_date(node_id):
            return UpdateInstructions(None, None, None, None)  # no update

        successful_updated = self.num_successful_updates.get(node_id, 0) > 0
        if successful_updated and self.config.get("restart_only", False):
            setup_commands = []
            ray_start_commands = self.config["worker_start_ray_commands"]
        elif successful_updated and self.config.get("no_restart", False):
            setup_commands = self._get_node_type_specific_fields(
                node_id, "worker_setup_commands")
            ray_start_commands = []
        else:
            setup_commands = self._get_node_type_specific_fields(
                node_id, "worker_setup_commands")
            ray_start_commands = self.config["worker_start_ray_commands"]

        docker_config = self._get_node_specific_docker_config(node_id)
        return UpdateInstructions(node_id=node_id,
                                  setup_commands=setup_commands,
                                  ray_start_commands=ray_start_commands,
                                  docker_config=docker_config)

    def spawn_updater(self, node_id, setup_commands, ray_start_commands,
                      node_resources, docker_config):
        logger.info(f"Creating new (spawn_updater) updater thread for node"
                    f" {node_id}.")
        ip = self.provider.internal_ip(node_id)
        node_type = self._get_node_type(node_id)
        self.node_tracker.track(node_id, ip, node_type)
        updater = NodeUpdaterThread(
            node_id=node_id,
            provider_config=self.config["provider"],
            provider=self.provider,
            auth_config=self.config["auth"],
            cluster_name=self.config["cluster_name"],
            file_mounts=self.config["file_mounts"],
            initialization_commands=with_head_node_ip(
                self._get_node_type_specific_fields(node_id,
                                                    "initialization_commands"),
                self.head_node_ip),
            setup_commands=with_head_node_ip(setup_commands,
                                             self.head_node_ip),
            ray_start_commands=with_head_node_ip(ray_start_commands,
                                                 self.head_node_ip),
            runtime_hash=self.runtime_hash,
            file_mounts_contents_hash=self.file_mounts_contents_hash,
            is_head_node=False,
            cluster_synced_files=self.config["cluster_synced_files"],
            rsync_options={
                "rsync_exclude": self.config.get("rsync_exclude"),
                "rsync_filter": self.config.get("rsync_filter")
            },
            process_runner=self.process_runner,
            use_internal_ip=True,
            docker_config=docker_config,
            node_resources=node_resources)
        updater.start()
        self.updaters[node_id] = updater

    def can_update(self, node_id):
        if self.disable_node_updaters:
            return False
        if node_id in self.updaters:
            return False
        if not self.launch_config_ok(node_id):
            return False
        if self.num_failed_updates.get(node_id, 0) > 0:  # TODO(ekl) retry?
            return False
        logger.debug(f"{node_id} is not being updated and "
                     "passes config check (can_update=True).")
        return True

    def launch_new_node(self, count: int, node_type: Optional[str]) -> None:
        logger.info(
            "StandardAutoscaler: Queue {} new nodes for launch".format(count))
        self.event_summarizer.add("Adding {} nodes of type " + str(node_type) +
                                  ".",
                                  quantity=count,
                                  aggregate=operator.add)
        self.pending_launches.inc(node_type, count)
        self.prom_metrics.pending_nodes.set(self.pending_launches.value)
        config = copy.deepcopy(self.config)
        # Split into individual launch requests of the max batch size.
        while count > 0:
            self.launch_queue.put(
                (config, min(count, self.max_launch_batch), node_type))
            count -= self.max_launch_batch

    @property
    def all_workers(self):
        return self.workers + self.unmanaged_workers

    def update_worker_list(self):
        self.workers = self.provider.non_terminated_nodes(
            tag_filters={TAG_RAY_NODE_KIND: NODE_KIND_WORKER})
        # Update running nodes gauge whenever we check workers
        self.prom_metrics.running_workers.set(len(self.workers))

    @property
    def unmanaged_workers(self):
        return self.provider.non_terminated_nodes(
            tag_filters={TAG_RAY_NODE_KIND: NODE_KIND_UNMANAGED})

    def kill_workers(self):
        logger.error("StandardAutoscaler: kill_workers triggered")
        nodes = self.workers()
        if nodes:
            self.provider.terminate_nodes(nodes)
            for node in nodes:
                self.node_tracker.untrack(node)
                self.prom_metrics.stopped_nodes.inc()
        logger.error("StandardAutoscaler: terminated {} node(s)".format(
            len(nodes)))

    def summary(self):
        """Summarizes the active, pending, and failed node launches.

        An active node is a node whose raylet is actively reporting heartbeats.
        A pending node is non-active node whose node tag is uninitialized,
        waiting for ssh, syncing files, or setting up.
        If a node is not pending or active, it is failed.

        Returns:
            AutoscalerSummary: The summary.
        """
        all_node_ids = self.provider.non_terminated_nodes(tag_filters={})

        active_nodes = Counter()
        pending_nodes = []
        failed_nodes = []
        non_failed = set()

        for node_id in all_node_ids:
            ip = self.provider.internal_ip(node_id)
            node_tags = self.provider.node_tags(node_id)

            if not all(tag in node_tags
                       for tag in (TAG_RAY_NODE_KIND, TAG_RAY_USER_NODE_TYPE,
                                   TAG_RAY_NODE_STATUS)):
                # In some node providers, creation of a node and tags is not
                # atomic, so just skip it.
                continue

            if node_tags[TAG_RAY_NODE_KIND] == NODE_KIND_UNMANAGED:
                continue
            node_type = node_tags[TAG_RAY_USER_NODE_TYPE]

            # TODO (Alex): If a node's raylet has died, it shouldn't be marked
            # as active.
            is_active = self.load_metrics.is_active(ip)
            if is_active:
                active_nodes[node_type] += 1
                non_failed.add(node_id)
            else:
                status = node_tags[TAG_RAY_NODE_STATUS]
                completed_states = [STATUS_UP_TO_DATE, STATUS_UPDATE_FAILED]
                is_pending = status not in completed_states
                if is_pending:
                    pending_nodes.append((ip, node_type, status))
                    non_failed.add(node_id)

        failed_nodes = self.node_tracker.get_all_failed_node_info(non_failed)

        # The concurrent counter leaves some 0 counts in, so we need to
        # manually filter those out.
        pending_launches = {}
        for node_type, count in self.pending_launches.breakdown().items():
            if count:
                pending_launches[node_type] = count

        return AutoscalerSummary(active_nodes=active_nodes,
                                 pending_nodes=pending_nodes,
                                 pending_launches=pending_launches,
                                 failed_nodes=failed_nodes)

    def info_string(self):
        lm_summary = self.load_metrics.summary()
        autoscaler_summary = self.summary()
        return "\n" + format_info_string(lm_summary, autoscaler_summary)
示例#4
0
文件: autoscaler.py 项目: zivzone/ray
class StandardAutoscaler:
    """The autoscaling control loop for a Ray cluster.

    There are two ways to start an autoscaling cluster: manually by running
    `ray start --head --autoscaling-config=/path/to/config.yaml` on a instance
    that has permission to launch other instances, or you can also use `ray up
    /path/to/config.yaml` from your laptop, which will configure the right
    AWS/Cloud roles automatically. See the documentation for a full definition
    of autoscaling behavior:
    https://docs.ray.io/en/master/cluster/autoscaling.html
    StandardAutoscaler's `update` method is periodically called in
    `monitor.py`'s monitoring loop.

    StandardAutoscaler is also used to bootstrap clusters (by adding workers
    until the cluster size that can handle the resource demand is met).
    """
    def __init__(self,
                 config_path,
                 load_metrics,
                 max_launch_batch=AUTOSCALER_MAX_LAUNCH_BATCH,
                 max_concurrent_launches=AUTOSCALER_MAX_CONCURRENT_LAUNCHES,
                 max_failures=AUTOSCALER_MAX_NUM_FAILURES,
                 process_runner=subprocess,
                 update_interval_s=AUTOSCALER_UPDATE_INTERVAL_S,
                 prefix_cluster_info=False,
                 event_summarizer=None):
        self.config_path = config_path
        # Prefix each line of info string with cluster name if True
        self.prefix_cluster_info = prefix_cluster_info
        # Keep this before self.reset (self.provider needs to be created
        # exactly once).
        self.provider = None
        self.resource_demand_scheduler = None
        self.reset(errors_fatal=True)
        self.head_node_ip = load_metrics.local_ip
        self.load_metrics = load_metrics

        self.max_failures = max_failures
        self.max_launch_batch = max_launch_batch
        self.max_concurrent_launches = max_concurrent_launches
        self.process_runner = process_runner
        self.event_summarizer = event_summarizer or EventSummarizer()

        # Map from node_id to NodeUpdater processes
        self.updaters = {}
        self.num_failed_updates = defaultdict(int)
        self.num_successful_updates = defaultdict(int)
        self.num_failures = 0
        self.last_update_time = 0.0
        self.update_interval_s = update_interval_s

        # Node launchers
        self.launch_queue = queue.Queue()
        self.pending_launches = ConcurrentCounter()
        max_batches = math.ceil(max_concurrent_launches /
                                float(max_launch_batch))
        for i in range(int(max_batches)):
            node_launcher = NodeLauncher(
                provider=self.provider,
                queue=self.launch_queue,
                index=i,
                pending=self.pending_launches,
                node_types=self.available_node_types,
            )
            node_launcher.daemon = True
            node_launcher.start()

        # NodeTracker maintains soft state to track the number of recently
        # failed nodes. It is best effort only.
        self.node_tracker = NodeTracker()

        # Expand local file_mounts to allow ~ in the paths. This can't be done
        # earlier when the config is written since we might be on different
        # platform and the expansion would result in wrong path.
        self.config["file_mounts"] = {
            remote: os.path.expanduser(local)
            for remote, local in self.config["file_mounts"].items()
        }

        for local_path in self.config["file_mounts"].values():
            assert os.path.exists(local_path)

        logger.info("StandardAutoscaler: {}".format(self.config))

    def update(self):
        try:
            self.reset(errors_fatal=False)
            self._update()
        except Exception as e:
            logger.exception("StandardAutoscaler: "
                             "Error during autoscaling.")
            # Don't abort the autoscaler if the K8s API server is down.
            # https://github.com/ray-project/ray/issues/12255
            is_k8s_connection_error = (self.config["provider"]["type"]
                                       == "kubernetes"
                                       and isinstance(e, MaxRetryError))
            if not is_k8s_connection_error:
                self.num_failures += 1
            if self.num_failures > self.max_failures:
                logger.critical("StandardAutoscaler: "
                                "Too many errors, abort.")
                raise e

    def _update(self):
        now = time.time()
        # Throttle autoscaling updates to this interval to avoid exceeding
        # rate limits on API calls.
        if now - self.last_update_time < self.update_interval_s:
            return

        self.last_update_time = now
        nodes = self.workers()

        self.load_metrics.prune_active_ips([
            self.provider.internal_ip(node_id)
            for node_id in self.all_workers()
        ])

        # Terminate any idle or out of date nodes
        last_used = self.load_metrics.last_used_time_by_ip
        horizon = now - (60 * self.config["idle_timeout_minutes"])

        nodes_to_terminate: Dict[NodeID, bool] = []
        node_type_counts = collections.defaultdict(int)
        # Sort based on last used to make sure to keep min_workers that
        # were most recently used. Otherwise, _keep_min_workers_of_node_type
        # might keep a node that should be terminated.
        sorted_node_ids = self._sort_based_on_last_used(nodes, last_used)
        # Don't terminate nodes needed by request_resources()
        nodes_allowed_to_terminate: Dict[NodeID, bool] = {}
        if self.load_metrics.get_resource_requests():
            nodes_allowed_to_terminate = self._get_nodes_allowed_to_terminate(
                sorted_node_ids)

        for node_id in sorted_node_ids:
            # Make sure to not kill idle node types if the number of workers
            # of that type is lower/equal to the min_workers of that type
            # or it is needed for request_resources().
            if (self._keep_min_worker_of_node_type(node_id, node_type_counts)
                    or not nodes_allowed_to_terminate.get(
                        node_id, True)) and self.launch_config_ok(node_id):
                continue

            node_ip = self.provider.internal_ip(node_id)
            if node_ip in last_used and last_used[node_ip] < horizon:
                logger.info("StandardAutoscaler: "
                            "{}: Terminating idle node.".format(node_id))
                self.event_summarizer.add("Removing {} nodes of type " +
                                          self._get_node_type(node_id) +
                                          " (idle).",
                                          quantity=1,
                                          aggregate=operator.add)
                nodes_to_terminate.append(node_id)
            elif not self.launch_config_ok(node_id):
                logger.info("StandardAutoscaler: "
                            "{}: Terminating outdated node.".format(node_id))
                self.event_summarizer.add("Removing {} nodes of type " +
                                          self._get_node_type(node_id) +
                                          " (outdated).",
                                          quantity=1,
                                          aggregate=operator.add)
                nodes_to_terminate.append(node_id)

        if nodes_to_terminate:
            self.provider.terminate_nodes(nodes_to_terminate)
            for node in nodes_to_terminate:
                self.node_tracker.untrack(node)
            nodes = self.workers()

        # Terminate nodes if there are too many
        nodes_to_terminate = []
        while (len(nodes) -
               len(nodes_to_terminate)) > self.config["max_workers"] and nodes:
            to_terminate = nodes.pop()
            logger.info("StandardAutoscaler: "
                        "{}: Terminating unneeded node.".format(to_terminate))
            self.event_summarizer.add("Removing {} nodes of type " +
                                      self._get_node_type(to_terminate) +
                                      " (max workers).",
                                      quantity=1,
                                      aggregate=operator.add)
            nodes_to_terminate.append(to_terminate)

        if nodes_to_terminate:
            self.provider.terminate_nodes(nodes_to_terminate)
            for node in nodes_to_terminate:
                self.node_tracker.untrack(node)
            nodes = self.workers()

        to_launch = self.resource_demand_scheduler.get_nodes_to_launch(
            self.provider.non_terminated_nodes(tag_filters={}),
            self.pending_launches.breakdown(),
            self.load_metrics.get_resource_demand_vector(),
            self.load_metrics.get_resource_utilization(),
            self.load_metrics.get_pending_placement_groups(),
            self.load_metrics.get_static_node_resources_by_ip(),
            ensure_min_cluster_size=self.load_metrics.get_resource_requests())
        for node_type, count in to_launch.items():
            self.launch_new_node(count, node_type=node_type)

        if to_launch:
            nodes = self.workers()

        # Process any completed updates
        completed_nodes = []
        for node_id, updater in self.updaters.items():
            if not updater.is_alive():
                completed_nodes.append(node_id)
        if completed_nodes:
            failed_nodes = []
            for node_id in completed_nodes:
                if self.updaters[node_id].exitcode == 0:
                    self.num_successful_updates[node_id] += 1
                    # Mark the node as active to prevent the node recovery
                    # logic immediately trying to restart Ray on the new node.
                    self.load_metrics.mark_active(
                        self.provider.internal_ip(node_id))
                else:
                    failed_nodes.append(node_id)
                    self.num_failed_updates[node_id] += 1
                    self.node_tracker.untrack(node_id)
                del self.updaters[node_id]

            if failed_nodes:
                # Some nodes in failed_nodes may have been terminated
                # during an update (for being idle after missing a heartbeat).
                # Only terminate currently non terminated nodes.
                non_terminated_nodes = self.workers()
                nodes_to_terminate: List[NodeID] = []
                for node_id in failed_nodes:
                    if node_id in non_terminated_nodes:
                        nodes_to_terminate.append(node_id)
                        logger.error(f"StandardAutoscaler: {node_id}:"
                                     " Terminating. Failed to setup/initialize"
                                     " node.")
                        self.event_summarizer.add(
                            "Removing {} nodes of type " +
                            self._get_node_type(node_id) + " (launch failed).",
                            quantity=1,
                            aggregate=operator.add)
                    else:
                        logger.warning(f"StandardAutoscaler: {node_id}:"
                                       " Failed to update node."
                                       " Node has already been terminated.")
                if nodes_to_terminate:
                    self.provider.terminate_nodes(nodes_to_terminate)
                    nodes = self.workers()

        # Update nodes with out-of-date files.
        # TODO(edoakes): Spawning these threads directly seems to cause
        # problems. They should at a minimum be spawned as daemon threads.
        # See https://github.com/ray-project/ray/pull/5903 for more info.
        T = []
        for node_id, setup_commands, ray_start_commands, docker_config in (
                self.should_update(node_id) for node_id in nodes):
            if node_id is not None:
                resources = self._node_resources(node_id)
                logger.debug(f"{node_id}: Starting new thread runner.")
                T.append(
                    threading.Thread(target=self.spawn_updater,
                                     args=(node_id, setup_commands,
                                           ray_start_commands, resources,
                                           docker_config)))
        for t in T:
            t.start()
        for t in T:
            t.join()

        # Attempt to recover unhealthy nodes
        for node_id in nodes:
            self.recover_if_needed(node_id, now)

        logger.info(self.info_string())
        legacy_log_info_string(self, nodes)

    def _sort_based_on_last_used(self, nodes: List[NodeID],
                                 last_used: Dict[str, float]) -> List[NodeID]:
        """Sort the nodes based on the last time they were used.

        The first item in the return list is the most recently used.
        """
        last_used_copy = copy.deepcopy(last_used)
        # Add the unconnected nodes as the least recently used (the end of
        # list). This prioritizes connected nodes.
        least_recently_used = -1

        def last_time_used(node_id: NodeID):
            node_ip = self.provider.internal_ip(node_id)
            if node_ip not in last_used_copy:
                return least_recently_used
            else:
                return last_used_copy[node_ip]

        return sorted(nodes, key=last_time_used, reverse=True)

    def _get_nodes_allowed_to_terminate(
            self, sorted_node_ids: List[NodeID]) -> Dict[NodeID, bool]:
        # TODO(ameer): try merging this with resource_demand_scheduler
        # code responsible for adding nodes for request_resources().
        """Returns the nodes allowed to terminate for request_resources().

        Args:
            sorted_node_ids: the node ids sorted based on last used (LRU last).

        Returns:
            nodes_allowed_to_terminate: whether the node id is allowed to
                terminate or not.
        """
        nodes_allowed_to_terminate: Dict[NodeID, bool] = {}
        head_node_resources: ResourceDict = copy.deepcopy(
            self.available_node_types[
                self.config["head_node_type"]]["resources"])
        if not head_node_resources:
            # Legacy yaml might include {} in the resources field.
            # TODO(ameer): this is somewhat duplicated in
            # resource_demand_scheduler.py.
            head_id: List[NodeID] = self.provider.non_terminated_nodes(
                {TAG_RAY_NODE_KIND: NODE_KIND_HEAD})
            if head_id:
                head_ip = self.provider.internal_ip(head_id[0])
                static_nodes: Dict[
                    NodeIP,
                    ResourceDict] = \
                    self.load_metrics.get_static_node_resources_by_ip()
                head_node_resources = static_nodes.get(head_ip, {})
            else:
                head_node_resources = {}

        max_node_resources: List[ResourceDict] = [head_node_resources]
        resource_demand_vector_worker_node_ids = []
        # Get max resources on all the non terminated nodes.
        for node_id in sorted_node_ids:
            tags = self.provider.node_tags(node_id)
            if TAG_RAY_USER_NODE_TYPE in tags:
                node_type = tags[TAG_RAY_USER_NODE_TYPE]
                node_resources: ResourceDict = copy.deepcopy(
                    self.available_node_types[node_type]["resources"])
                if not node_resources:
                    # Legacy yaml might include {} in the resources field.
                    static_nodes: Dict[
                        NodeIP,
                        ResourceDict] = \
                            self.load_metrics.get_static_node_resources_by_ip()
                    node_ip = self.provider.internal_ip(node_id)
                    node_resources = static_nodes.get(node_ip, {})
                max_node_resources.append(node_resources)
                resource_demand_vector_worker_node_ids.append(node_id)
        # Since it is sorted based on last used, we "keep" nodes that are
        # most recently used when we binpack. We assume get_bin_pack_residual
        # is following the given order here.
        used_resource_requests: List[ResourceDict]
        _, used_resource_requests = \
            get_bin_pack_residual(max_node_resources,
                                  self.load_metrics.get_resource_requests())
        # Remove the first entry (the head node).
        max_node_resources.pop(0)
        # Remove the first entry (the head node).
        used_resource_requests.pop(0)
        for i, node_id in enumerate(resource_demand_vector_worker_node_ids):
            if used_resource_requests[i] == max_node_resources[i] \
                    and max_node_resources[i]:
                # No resources of the node were needed for request_resources().
                # max_node_resources[i] is an empty dict for legacy yamls
                # before the node is connected.
                nodes_allowed_to_terminate[node_id] = True
            else:
                nodes_allowed_to_terminate[node_id] = False
        return nodes_allowed_to_terminate

    def _keep_min_worker_of_node_type(
            self, node_id: NodeID, node_type_counts: Dict[NodeType,
                                                          int]) -> bool:
        """Returns if workers of node_type can be terminated.
        The worker cannot be terminated to respect min_workers constraint.

        Receives the counters of running nodes so far and determines if idle
        node_id should be terminated or not. It also updates the counters
        (node_type_counts), which is returned by reference.

        Args:
            node_type_counts(Dict[NodeType, int]): The non_terminated node
                types counted so far.
        Returns:
            bool: if workers of node_types can be terminated or not.
        """
        tags = self.provider.node_tags(node_id)
        if TAG_RAY_USER_NODE_TYPE in tags:
            node_type = tags[TAG_RAY_USER_NODE_TYPE]
            node_type_counts[node_type] += 1
            min_workers = self.available_node_types[node_type].get(
                "min_workers", 0)
            max_workers = self.available_node_types[node_type].get(
                "max_workers", 0)
            if node_type_counts[node_type] <= min(min_workers, max_workers):
                return True

        return False

    def _node_resources(self, node_id):
        node_type = self.provider.node_tags(node_id).get(
            TAG_RAY_USER_NODE_TYPE)
        if self.available_node_types:
            return self.available_node_types.get(node_type,
                                                 {}).get("resources", {})
        else:
            return {}

    def reset(self, errors_fatal=False):
        sync_continuously = False
        if hasattr(self, "config"):
            sync_continuously = self.config.get(
                "file_mounts_sync_continuously", False)
        try:
            with open(self.config_path) as f:
                new_config = yaml.safe_load(f.read())
            if new_config != getattr(self, "config", None):
                try:
                    validate_config(new_config)
                except Exception as e:
                    logger.debug(
                        "Cluster config validation failed. The version of "
                        "the ray CLI you launched this cluster with may "
                        "be higher than the version of ray being run on "
                        "the cluster. Some new features may not be "
                        "available until you upgrade ray on your cluster.",
                        exc_info=e)
            (new_runtime_hash,
             new_file_mounts_contents_hash) = hash_runtime_conf(
                 new_config["file_mounts"],
                 new_config["cluster_synced_files"],
                 [
                     new_config["worker_setup_commands"],
                     new_config["worker_start_ray_commands"],
                 ],
                 generate_file_mounts_contents_hash=sync_continuously,
             )
            self.config = new_config
            self.runtime_hash = new_runtime_hash
            self.file_mounts_contents_hash = new_file_mounts_contents_hash
            if not self.provider:
                self.provider = _get_node_provider(self.config["provider"],
                                                   self.config["cluster_name"])

            self.available_node_types = self.config["available_node_types"]
            upscaling_speed = self.config.get("upscaling_speed")
            aggressive = self.config.get("autoscaling_mode") == "aggressive"
            target_utilization_fraction = self.config.get(
                "target_utilization_fraction")
            if upscaling_speed:
                upscaling_speed = float(upscaling_speed)
            # TODO(ameer): consider adding (if users ask) an option of
            # initial_upscaling_num_workers.
            elif aggressive:
                upscaling_speed = 99999
                logger.warning(
                    "Legacy aggressive autoscaling mode "
                    "detected. Replacing it by setting upscaling_speed to "
                    "99999.")
            elif target_utilization_fraction:
                upscaling_speed = (
                    1 / max(target_utilization_fraction, 0.001) - 1)
                logger.warning(
                    "Legacy target_utilization_fraction config "
                    "detected. Replacing it by setting upscaling_speed to " +
                    "1 / target_utilization_fraction - 1.")
            else:
                upscaling_speed = 1.0
            if self.resource_demand_scheduler:
                # The node types are autofilled internally for legacy yamls,
                # overwriting the class will remove the inferred node resources
                # for legacy yamls.
                self.resource_demand_scheduler.reset_config(
                    self.provider, self.available_node_types,
                    self.config["max_workers"], self.config["head_node_type"],
                    upscaling_speed)
            else:
                self.resource_demand_scheduler = ResourceDemandScheduler(
                    self.provider, self.available_node_types,
                    self.config["max_workers"], self.config["head_node_type"],
                    upscaling_speed)

        except Exception as e:
            if errors_fatal:
                raise e
            else:
                logger.exception("StandardAutoscaler: "
                                 "Error parsing config.")

    def launch_config_ok(self, node_id):
        node_tags = self.provider.node_tags(node_id)
        tag_launch_conf = node_tags.get(TAG_RAY_LAUNCH_CONFIG)
        node_type = node_tags.get(TAG_RAY_USER_NODE_TYPE)

        launch_config = copy.deepcopy(self.config["worker_nodes"])
        if node_type:
            launch_config.update(
                self.config["available_node_types"][node_type]["node_config"])
        calculated_launch_hash = hash_launch_conf(launch_config,
                                                  self.config["auth"])

        if calculated_launch_hash != tag_launch_conf:
            return False
        return True

    def files_up_to_date(self, node_id):
        node_tags = self.provider.node_tags(node_id)
        applied_config_hash = node_tags.get(TAG_RAY_RUNTIME_CONFIG)
        applied_file_mounts_contents_hash = node_tags.get(
            TAG_RAY_FILE_MOUNTS_CONTENTS)
        if (applied_config_hash != self.runtime_hash
                or (self.file_mounts_contents_hash is not None
                    and self.file_mounts_contents_hash !=
                    applied_file_mounts_contents_hash)):
            logger.info("StandardAutoscaler: "
                        "{}: Runtime state is ({},{}), want ({},{})".format(
                            node_id, applied_config_hash,
                            applied_file_mounts_contents_hash,
                            self.runtime_hash, self.file_mounts_contents_hash))
            return False
        return True

    def recover_if_needed(self, node_id, now):
        if not self.can_update(node_id):
            return
        key = self.provider.internal_ip(node_id)

        if key in self.load_metrics.last_heartbeat_time_by_ip:
            last_heartbeat_time = self.load_metrics.last_heartbeat_time_by_ip[
                key]
            delta = now - last_heartbeat_time
            if delta < AUTOSCALER_HEARTBEAT_TIMEOUT_S:
                return

        logger.warning("StandardAutoscaler: "
                       "{}: No recent heartbeat, "
                       "restarting Ray to recover...".format(node_id))
        self.event_summarizer.add("Restarting {} nodes of type " +
                                  self._get_node_type(node_id) +
                                  " (lost contact with raylet).",
                                  quantity=1,
                                  aggregate=operator.add)
        updater = NodeUpdaterThread(
            node_id=node_id,
            provider_config=self.config["provider"],
            provider=self.provider,
            auth_config=self.config["auth"],
            cluster_name=self.config["cluster_name"],
            file_mounts={},
            initialization_commands=[],
            setup_commands=[],
            ray_start_commands=with_head_node_ip(
                self.config["worker_start_ray_commands"], self.head_node_ip),
            runtime_hash=self.runtime_hash,
            file_mounts_contents_hash=self.file_mounts_contents_hash,
            process_runner=self.process_runner,
            use_internal_ip=True,
            is_head_node=False,
            docker_config=self.config.get("docker"),
            node_resources=self._node_resources(node_id))
        updater.start()
        self.updaters[node_id] = updater

    def _get_node_type(self, node_id: str) -> str:
        node_tags = self.provider.node_tags(node_id)
        if TAG_RAY_USER_NODE_TYPE in node_tags:
            return node_tags[TAG_RAY_USER_NODE_TYPE]
        else:
            return "unknown_node_type"

    def _get_node_type_specific_fields(self, node_id: str,
                                       fields_key: str) -> Any:
        fields = self.config[fields_key]
        node_tags = self.provider.node_tags(node_id)
        if TAG_RAY_USER_NODE_TYPE in node_tags:
            node_type = node_tags[TAG_RAY_USER_NODE_TYPE]
            if node_type not in self.available_node_types:
                raise ValueError(f"Unknown node type tag: {node_type}.")
            node_specific_config = self.available_node_types[node_type]
            if fields_key in node_specific_config:
                fields = node_specific_config[fields_key]
        return fields

    def _get_node_specific_docker_config(self, node_id):
        if "docker" not in self.config:
            return {}
        docker_config = copy.deepcopy(self.config.get("docker", {}))
        node_specific_docker = self._get_node_type_specific_fields(
            node_id, "docker")
        docker_config.update(node_specific_docker)
        return docker_config

    def should_update(self, node_id):
        if not self.can_update(node_id):
            return UpdateInstructions(None, None, None, None)  # no update

        status = self.provider.node_tags(node_id).get(TAG_RAY_NODE_STATUS)
        if status == STATUS_UP_TO_DATE and self.files_up_to_date(node_id):
            return UpdateInstructions(None, None, None, None)  # no update

        successful_updated = self.num_successful_updates.get(node_id, 0) > 0
        if successful_updated and self.config.get("restart_only", False):
            setup_commands = []
            ray_start_commands = self.config["worker_start_ray_commands"]
        elif successful_updated and self.config.get("no_restart", False):
            setup_commands = self._get_node_type_specific_fields(
                node_id, "worker_setup_commands")
            ray_start_commands = []
        else:
            setup_commands = self._get_node_type_specific_fields(
                node_id, "worker_setup_commands")
            ray_start_commands = self.config["worker_start_ray_commands"]

        docker_config = self._get_node_specific_docker_config(node_id)
        return UpdateInstructions(node_id=node_id,
                                  setup_commands=setup_commands,
                                  ray_start_commands=ray_start_commands,
                                  docker_config=docker_config)

    def spawn_updater(self, node_id, setup_commands, ray_start_commands,
                      node_resources, docker_config):
        logger.info(f"Creating new (spawn_updater) updater thread for node"
                    f" {node_id}.")
        ip = self.provider.internal_ip(node_id)
        node_type = self._get_node_type(node_id)
        self.node_tracker.track(node_id, ip, node_type)
        updater = NodeUpdaterThread(
            node_id=node_id,
            provider_config=self.config["provider"],
            provider=self.provider,
            auth_config=self.config["auth"],
            cluster_name=self.config["cluster_name"],
            file_mounts=self.config["file_mounts"],
            initialization_commands=with_head_node_ip(
                self._get_node_type_specific_fields(node_id,
                                                    "initialization_commands"),
                self.head_node_ip),
            setup_commands=with_head_node_ip(setup_commands,
                                             self.head_node_ip),
            ray_start_commands=with_head_node_ip(ray_start_commands,
                                                 self.head_node_ip),
            runtime_hash=self.runtime_hash,
            file_mounts_contents_hash=self.file_mounts_contents_hash,
            is_head_node=False,
            cluster_synced_files=self.config["cluster_synced_files"],
            rsync_options={
                "rsync_exclude": self.config.get("rsync_exclude"),
                "rsync_filter": self.config.get("rsync_filter")
            },
            process_runner=self.process_runner,
            use_internal_ip=True,
            docker_config=docker_config,
            node_resources=node_resources)
        updater.start()
        self.updaters[node_id] = updater

    def can_update(self, node_id):
        if node_id in self.updaters:
            return False
        if not self.launch_config_ok(node_id):
            return False
        if self.num_failed_updates.get(node_id, 0) > 0:  # TODO(ekl) retry?
            return False
        logger.debug(f"{node_id} is not being updated and "
                     "passes config check (can_update=True).")
        return True

    def launch_new_node(self, count: int, node_type: Optional[str]) -> None:
        logger.info(
            "StandardAutoscaler: Queue {} new nodes for launch".format(count))
        self.event_summarizer.add("Adding {} nodes of type " + str(node_type) +
                                  ".",
                                  quantity=count,
                                  aggregate=operator.add)
        self.pending_launches.inc(node_type, count)
        config = copy.deepcopy(self.config)
        # Split into individual launch requests of the max batch size.
        while count > 0:
            self.launch_queue.put(
                (config, min(count, self.max_launch_batch), node_type))
            count -= self.max_launch_batch

    def all_workers(self):
        return self.workers() + self.unmanaged_workers()

    def workers(self):
        return self.provider.non_terminated_nodes(
            tag_filters={TAG_RAY_NODE_KIND: NODE_KIND_WORKER})

    def unmanaged_workers(self):
        return self.provider.non_terminated_nodes(
            tag_filters={TAG_RAY_NODE_KIND: NODE_KIND_UNMANAGED})

    def kill_workers(self):
        logger.error("StandardAutoscaler: kill_workers triggered")
        nodes = self.workers()
        if nodes:
            self.provider.terminate_nodes(nodes)
            for node in nodes:
                self.node_tracker.untrack(node)
        logger.error("StandardAutoscaler: terminated {} node(s)".format(
            len(nodes)))

    def summary(self):
        """Summarizes the active, pending, and failed node launches.

        An active node is a node whose raylet is actively reporting heartbeats.
        A pending node is non-active node whose node tag is uninitialized,
        waiting for ssh, syncing files, or setting up.
        If a node is not pending or active, it is failed.

        Returns:
            AutoscalerSummary: The summary.
        """
        all_node_ids = self.provider.non_terminated_nodes(tag_filters={})

        active_nodes = Counter()
        pending_nodes = []
        failed_nodes = []
        non_failed = set()

        for node_id in all_node_ids:
            ip = self.provider.internal_ip(node_id)
            node_tags = self.provider.node_tags(node_id)

            if not all(tag in node_tags
                       for tag in (TAG_RAY_NODE_KIND, TAG_RAY_USER_NODE_TYPE,
                                   TAG_RAY_NODE_STATUS)):
                # In some node providers, creation of a node and tags is not
                # atomic, so just skip it.
                continue

            if node_tags[TAG_RAY_NODE_KIND] == NODE_KIND_UNMANAGED:
                continue
            node_type = node_tags[TAG_RAY_USER_NODE_TYPE]

            # TODO (Alex): If a node's raylet has died, it shouldn't be marked
            # as active.
            is_active = self.load_metrics.is_active(ip)
            if is_active:
                active_nodes[node_type] += 1
                non_failed.add(node_id)
            else:
                status = node_tags[TAG_RAY_NODE_STATUS]
                pending_states = [
                    STATUS_UNINITIALIZED, STATUS_WAITING_FOR_SSH,
                    STATUS_SYNCING_FILES, STATUS_SETTING_UP
                ]
                is_pending = status in pending_states
                if is_pending:
                    pending_nodes.append((ip, node_type, status))
                    non_failed.add(node_id)

        failed_nodes = self.node_tracker.get_all_failed_node_info(non_failed)

        # The concurrent counter leaves some 0 counts in, so we need to
        # manually filter those out.
        pending_launches = {}
        for node_type, count in self.pending_launches.breakdown().items():
            if count:
                pending_launches[node_type] = count

        return AutoscalerSummary(active_nodes=active_nodes,
                                 pending_nodes=pending_nodes,
                                 pending_launches=pending_launches,
                                 failed_nodes=failed_nodes)

    def info_string(self):
        lm_summary = self.load_metrics.summary()
        autoscaler_summary = self.summary()
        return "\n" + format_info_string(lm_summary, autoscaler_summary)