def __init__(self, env_name, policy_cls, actor_id, batch_size, logdir): env = create_env(env_name) self.id = actor_id # TODO(rliaw): should change this to be just env.observation_space self.policy = policy_cls(env.observation_space.shape, env.action_space) self.runner = RunnerThread(env, self.policy, batch_size) self.env = env self.logdir = logdir self.start()
def __init__(self, env_name, config): Algorithm.__init__(self, env_name, config) self.env = create_env(env_name) self.policy = LSTMPolicy(self.env.observation_space.shape, self.env.action_space.n, 0) self.agents = [ Runner.remote(env_name, i) for i in range(config["num_workers"]) ] self.parameters = self.policy.get_weights() self.iteration = 0
def __init__(self, env_name, actor_id, logdir="/tmp/ray/a3c/", start=True): env = create_env(env_name) self.id = actor_id num_actions = env.action_space.n self.policy = LSTMPolicy(env.observation_space.shape, num_actions, actor_id) self.runner = RunnerThread(env, self.policy, 20) self.env = env self.logdir = logdir if start: self.start()
def __init__(self, env_name, config, upload_dir=None): config.update({"alg": "A3C"}) Algorithm.__init__(self, env_name, config, upload_dir=upload_dir) self.env = create_env(env_name) self.policy = LSTMPolicy(self.env.observation_space.shape, self.env.action_space.n, 0) self.agents = [ Runner.remote(env_name, i, self.logdir) for i in range(config["num_workers"]) ] self.parameters = self.policy.get_weights() self.iteration = 0
def __init__(self, env_name, config, policy_cls=SharedModelLSTM, upload_dir=None): config.update({"alg": "A3C"}) Agent.__init__(self, env_name, config, upload_dir=upload_dir) self.env = create_env(env_name) self.policy = policy_cls(self.env.observation_space.shape, self.env.action_space) self.agents = [ Runner.remote(env_name, policy_cls, i, config["batch_size"], self.logdir) for i in range(config["num_workers"]) ] self.parameters = self.policy.get_weights()