def test_callbacks(self): for fw in framework_iterator(frameworks=("torch", "tf")): counts = Counter() pg = PG( env="CartPole-v0", config={ "num_workers": 0, "rollout_fragment_length": 50, "train_batch_size": 50, "callbacks": { "on_episode_start": lambda x: counts.update({"start": 1}), "on_episode_step": lambda x: counts.update({"step": 1}), "on_episode_end": lambda x: counts.update({"end": 1}), "on_sample_end": lambda x: counts.update({"sample": 1}), }, "framework": fw, }, ) pg.train() pg.train() self.assertGreater(counts["sample"], 0) self.assertGreater(counts["start"], 0) self.assertGreater(counts["end"], 0) self.assertGreater(counts["step"], 0) pg.stop()
def test_nested_action_spaces(self): config = DEFAULT_CONFIG.copy() config["env"] = RandomEnv # Write output to check, whether actions are written correctly. tmp_dir = os.popen("mktemp -d").read()[:-1] if not os.path.exists(tmp_dir): # Last resort: Resolve via underlying tempdir (and cut tmp_. tmp_dir = ray._private.utils.tempfile.gettempdir() + tmp_dir[4:] assert os.path.exists(tmp_dir), f"'{tmp_dir}' not found!" config["output"] = tmp_dir # Switch off OPE as we don't write action-probs. # TODO: We should probably always write those if `output` is given. config["off_policy_estimation_methods"] = {} # Pretend actions in offline files are already normalized. config["actions_in_input_normalized"] = True for _ in framework_iterator(config): for name, action_space in SPACES.items(): config["env_config"] = { "action_space": action_space, } for flatten in [True, False]: print(f"A={action_space} flatten={flatten}") shutil.rmtree(config["output"]) config["_disable_action_flattening"] = not flatten trainer = PG(config) trainer.train() trainer.stop() # Check actions in output file (whether properly flattened # or not). reader = JsonReader( inputs=config["output"], ioctx=trainer.workers.local_worker().io_context, ) sample_batch = reader.next() if flatten: assert isinstance(sample_batch["actions"], np.ndarray) assert len(sample_batch["actions"].shape) == 2 assert sample_batch["actions"].shape[0] == len( sample_batch) else: tree.assert_same_structure( trainer.get_policy().action_space_struct, sample_batch["actions"], ) # Test, whether offline data can be properly read by a # BCTrainer, configured accordingly. config["input"] = config["output"] del config["output"] bc_trainer = BC(config=config) bc_trainer.train() bc_trainer.stop() config["output"] = tmp_dir config["input"] = "sampler"
def test_local(self): cf = DEFAULT_CONFIG.copy() cf["model"]["fcnet_hiddens"] = [10] cf["num_workers"] = 2 for _ in framework_iterator(cf): agent = PG(cf, "CartPole-v0") print(agent.train()) agent.stop()
def test_multi_agent(self): register_env( "multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 10}) ) for fw in framework_iterator(): pg = PG( env="multi_agent_cartpole", config={ "num_workers": 0, "output": self.test_dir, "multiagent": { "policies": {"policy_1", "policy_2"}, "policy_mapping_fn": ( lambda aid, **kwargs: random.choice( ["policy_1", "policy_2"] ) ), }, "framework": fw, }, ) pg.train() self.assertEqual(len(os.listdir(self.test_dir)), 1) pg.stop() pg = PG( env="multi_agent_cartpole", config={ "num_workers": 0, "input": self.test_dir, "off_policy_estimation_methods": { "simulation": {"type": "simulation"} }, "train_batch_size": 2000, "multiagent": { "policies": {"policy_1", "policy_2"}, "policy_mapping_fn": ( lambda aid, **kwargs: random.choice( ["policy_1", "policy_2"] ) ), }, "framework": fw, }, ) for _ in range(50): result = pg.train() if not np.isnan(result["episode_reward_mean"]): return # simulation ok time.sleep(0.1) assert False, "did not see any simulation results"
def test_multi_agent(self): register_env("multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 10})) for fw in framework_iterator(): pg = PG( env="multi_agent_cartpole", config={ "num_workers": 0, "output": self.test_dir + fw, "multiagent": { "policies": {"policy_1", "policy_2"}, "policy_mapping_fn": (lambda aid, **kwargs: random.choice( ["policy_1", "policy_2"])), }, "framework": fw, }, ) pg.train() self.assertEqual(len(os.listdir(self.test_dir + fw)), 1) pg.stop() pg = PG( env="multi_agent_cartpole", config={ "num_workers": 0, "input": self.test_dir + fw, "train_batch_size": 2000, "multiagent": { "policies": {"policy_1", "policy_2"}, "policy_mapping_fn": (lambda aid, **kwargs: random.choice( ["policy_1", "policy_2"])), }, "framework": fw, "evaluation_interval": 1, "evaluation_config": { "input": "sampler" }, }, ) result = pg.train() assert np.isnan( result["episode_reward_mean"] ), "episode reward should not be computed for offline data" assert not np.isnan( result["evaluation"]["episode_reward_mean"] ), "Did not see simulation results during evaluation"
def test_query_evaluators(self): register_env("test", lambda _: gym.make("CartPole-v0")) for fw in framework_iterator(frameworks=("torch", "tf")): pg = PG( env="test", config={ "num_workers": 2, "rollout_fragment_length": 5, "num_envs_per_worker": 2, "framework": fw, "create_env_on_driver": True, }, ) results = pg.workers.foreach_worker( lambda ev: ev.rollout_fragment_length) results2 = pg.workers.foreach_worker_with_index( lambda ev, i: (i, ev.rollout_fragment_length)) results3 = pg.workers.foreach_worker( lambda ev: ev.foreach_env(lambda env: 1)) self.assertEqual(results, [10, 10, 10]) self.assertEqual(results2, [(0, 10), (1, 10), (2, 10)]) self.assertEqual(results3, [[1, 1], [1, 1], [1, 1]]) pg.stop()