def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000)
def __init__( self, size, alpha, # added for dynamic experience replay permanent_data_length=0, human_data=None, dynamic_experience_replay=False, demonstration_zone_percentage=0): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ # added for dynamic experience replay super(PrioritizedReplayBuffer, self).__init__(size, permanent_data_length) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) # added for dynamic experience replay self._permanent_data_length = permanent_data_length self._demo_index = permanent_data_length if dynamic_experience_replay and demonstration_zone_percentage > 0: self._max_demo_size = math.ceil( size * demonstration_zone_percentage ) # assign the size for demonstration zone assert self._max_demo_size > 10000, "demonstration zone is too small, please increase buffer size" prGreen("the maximum demonstration zone size: {}".format( self._max_demo_size)) if self._permanent_data_length > 0: # insert human demos to the buffer with full prioritization for transition in human_data: self.add(transition[0], transition[1], transition[2], transition[3], transition[4], 1)
class PrioritizedReplayBuffer(ReplayBuffer): def __init__(self, size, alpha): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) def add(self, obs_t, action, reward, obs_tp1, done, weight): """See ReplayBuffer.store_effect""" idx = self._next_idx super(PrioritizedReplayBuffer, self).add(obs_t, action, reward, obs_tp1, done, weight) if weight is None: weight = self._max_priority self._it_sum[idx] = weight**self._alpha self._it_min[idx] = weight**self._alpha def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 self._num_sampled += batch_size idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) def stats(self, debug=False): parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent
def test_max_interval_tree(self): tree = MinSegmentTree(4) tree[0] = 1.0 tree[2] = 0.5 tree[3] = 3.0 assert np.isclose(tree.min(), 0.5) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.5) assert np.isclose(tree.min(0, -1), 0.5) assert np.isclose(tree.min(2, 4), 0.5) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 0.7 assert np.isclose(tree.min(), 0.7) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.7) assert np.isclose(tree.min(0, -1), 0.7) assert np.isclose(tree.min(2, 4), 0.7) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 4.0 assert np.isclose(tree.min(), 1.0) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 1.0) assert np.isclose(tree.min(0, -1), 1.0) assert np.isclose(tree.min(2, 4), 3.0) assert np.isclose(tree.min(2, 3), 4.0) assert np.isclose(tree.min(2, -1), 4.0) assert np.isclose(tree.min(3, 4), 3.0)
def test_max_interval_tree(): tree = MinSegmentTree(4) tree[0] = 1.0 tree[2] = 0.5 tree[3] = 3.0 assert np.isclose(tree.min(), 0.5) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.5) assert np.isclose(tree.min(0, -1), 0.5) assert np.isclose(tree.min(2, 4), 0.5) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 0.7 assert np.isclose(tree.min(), 0.7) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 0.7) assert np.isclose(tree.min(0, -1), 0.7) assert np.isclose(tree.min(2, 4), 0.7) assert np.isclose(tree.min(3, 4), 3.0) tree[2] = 4.0 assert np.isclose(tree.min(), 1.0) assert np.isclose(tree.min(0, 2), 1.0) assert np.isclose(tree.min(0, 3), 1.0) assert np.isclose(tree.min(0, -1), 1.0) assert np.isclose(tree.min(2, 4), 3.0) assert np.isclose(tree.min(2, 3), 4.0) assert np.isclose(tree.min(2, -1), 4.0) assert np.isclose(tree.min(3, 4), 3.0)
class PrioritizedReplayBuffer(ReplayBuffer): @DeveloperAPI def __init__( self, size, alpha, # added for dynamic experience replay permanent_data_length=0, human_data=None, dynamic_experience_replay=False, demonstration_zone_percentage=0): """Create Prioritized Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. alpha: float how much prioritization is used (0 - no prioritization, 1 - full prioritization) See Also -------- ReplayBuffer.__init__ """ # added for dynamic experience replay super(PrioritizedReplayBuffer, self).__init__(size, permanent_data_length) assert alpha > 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 self._prio_change_stats = WindowStat("reprio", 1000) # added for dynamic experience replay self._permanent_data_length = permanent_data_length self._demo_index = permanent_data_length if dynamic_experience_replay and demonstration_zone_percentage > 0: self._max_demo_size = math.ceil( size * demonstration_zone_percentage ) # assign the size for demonstration zone assert self._max_demo_size > 10000, "demonstration zone is too small, please increase buffer size" prGreen("the maximum demonstration zone size: {}".format( self._max_demo_size)) if self._permanent_data_length > 0: # insert human demos to the buffer with full prioritization for transition in human_data: self.add(transition[0], transition[1], transition[2], transition[3], transition[4], 1) @DeveloperAPI def add(self, obs_t, action, reward, obs_tp1, done, weight): """See ReplayBuffer.store_effect""" idx = self._next_idx super(PrioritizedReplayBuffer, self).add(obs_t, action, reward, obs_tp1, done, weight) if weight is None: weight = self._max_priority self._it_sum[idx] = weight**self._alpha self._it_min[idx] = weight**self._alpha # added for dynamic experience replay def update_demos(self, demo_data): updated_demo_size = self._permanent_data_length + len(demo_data) if updated_demo_size < self._max_demo_size: self._permanent_data_length = updated_demo_size else: self._permanent_data_length = self._max_demo_size for transition in demo_data: self._storage[self._demo_index] = transition self._demo_index = (self._demo_index + 1) % self._max_demo_size def _sample_proportional(self, batch_size): res = [] for _ in range(batch_size): # TODO(szymon): should we ensure no repeats? mass = random.random() * self._it_sum.sum(0, len(self._storage)) idx = self._it_sum.find_prefixsum_idx(mass) res.append(idx) return res @DeveloperAPI def sample_idxes(self, batch_size): return self._sample_proportional(batch_size) @DeveloperAPI def sample_with_idxes(self, idxes, beta): assert beta > 0 self._num_sampled += len(idxes) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) @DeveloperAPI def sample(self, batch_size, beta): """Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. Parameters ---------- batch_size: int How many transitions to sample. beta: float To what degree to use importance weights (0 - no corrections, 1 - full correction) Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. weights: np.array Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition idxes: np.array Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 self._num_sampled += batch_size idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage))**(-beta) for idx in idxes: p_sample = self._it_sum[idx] / self._it_sum.sum() weight = (p_sample * len(self._storage))**(-beta) weights.append(weight / max_weight) weights = np.array(weights) encoded_sample = self._encode_sample(idxes) return tuple(list(encoded_sample) + [weights, idxes]) @DeveloperAPI def update_priorities(self, idxes, priorities): """Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. Parameters ---------- idxes: [int] List of idxes of sampled transitions priorities: [float] List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) for idx, priority in zip(idxes, priorities): assert priority > 0 assert 0 <= idx < len(self._storage) delta = priority**self._alpha - self._it_sum[idx] self._prio_change_stats.push(delta) self._it_sum[idx] = priority**self._alpha self._it_min[idx] = priority**self._alpha self._max_priority = max(self._max_priority, priority) @DeveloperAPI def stats(self, debug=False): parent = ReplayBuffer.stats(self, debug) if debug: parent.update(self._prio_change_stats.stats()) return parent