def training_loop(self) -> None: scaling_config_dataclass = self._validate_and_get_scaling_config_data_class( self.scaling_config ) train_loop_per_worker = construct_train_func( self.train_loop_per_worker, self.train_loop_config, fn_arg_name="train_loop_per_worker", ) additional_resources_per_worker = ( scaling_config_dataclass.additional_resources_per_worker ) backend_executor = BackendExecutor( backend_config=self.backend_config, num_workers=scaling_config_dataclass.num_workers, num_cpus_per_worker=scaling_config_dataclass.num_cpus_per_worker, num_gpus_per_worker=scaling_config_dataclass.num_gpus_per_worker, additional_resources_per_worker=additional_resources_per_worker, max_retries=0, ) checkpoint_manager = self._checkpoint_manager_cls() checkpoint_manager.on_init(preprocessor=self.preprocessor) # Start the remote actors. backend_executor.start(initialization_hook=None) if self.resume_from_checkpoint: resume_checkpoint_dict = self.resume_from_checkpoint.to_dict() else: resume_checkpoint_dict = None dataset_spec = _RayDatasetSpec( dataset_or_dict=self.datasets, dataset_split_fn=_default_dataset_split_fn ) # TODO(amog): Have TrainingIterator also accept a checkpoint ObjectRef instead # of just a Dict. training_iterator = TrainingIterator( backend_executor=backend_executor, backend_config=self.backend_config, train_func=train_loop_per_worker, dataset_spec=dataset_spec, checkpoint_manager=checkpoint_manager, checkpoint=resume_checkpoint_dict, checkpoint_strategy=None, ) for results in training_iterator: # TODO(ml-team): add ability to report results from multiple workers. first_worker_results = results[0] tune.report(**first_worker_results) # Shutdown workers. backend_executor.shutdown()
def test_shutdown(ray_start_2_cpus): config = TestConfig() e = BackendExecutor(config, num_workers=2) e.start() assert len(e.worker_group) == 2 e.shutdown() with pytest.raises(InactiveWorkerGroupError): e.start_training(lambda: 1)
def training_loop(self) -> None: scaling_config_dataclass = ScalingConfigDataClass( **self.scaling_config) train_loop_per_worker = construct_train_func( self.train_loop_per_worker, self.train_loop_config, fn_arg_name="train_loop_per_worker", ) additional_resources_per_worker = ( scaling_config_dataclass.additional_resources_per_worker) backend_executor = BackendExecutor( backend_config=self.backend_config, num_workers=scaling_config_dataclass.num_workers, num_cpus_per_worker=scaling_config_dataclass.num_cpus_per_worker, num_gpus_per_worker=scaling_config_dataclass.num_gpus_per_worker, additional_resources_per_worker=additional_resources_per_worker, max_retries=0, ) checkpoint_manager = _DataParallelCheckpointManager() checkpoint_manager.on_init(preprocessor=self.preprocessor) # Start the remote actors. backend_executor.start(initialization_hook=None) if self.resume_from_checkpoint: resume_checkpoint_dict = self.resume_from_checkpoint.to_dict() else: resume_checkpoint_dict = None # Tell Ray Train to only shard the train dataset and not the other datasets. # This is purely an implementation detail and users do not need to know about # this. # TODO(amog): Refactor this to remove hack and make this more modular. # TrainingIterator should accept a generic custom_ingest_func that contains # the logic for how to split the Datasets. updated_dataset_dict = {} for key, value in self.datasets.items(): if key == TRAIN_DATASET_KEY: updated_dataset_dict[key] = value else: # Ray Train will strip out the added string before exposing to users. updated_dataset_dict[key + "_NO-SHARD"] = value # TODO(amog): Have TrainingIterator also accept a checkpoint ObjectRef instead # of just a Dict. training_iterator = TrainingIterator( backend_executor=backend_executor, backend_config=self.backend_config, train_func=train_loop_per_worker, dataset=updated_dataset_dict if len(updated_dataset_dict) > 0 else None, checkpoint_manager=checkpoint_manager, checkpoint=resume_checkpoint_dict, checkpoint_strategy=None, ) for results in training_iterator: # TODO(ml-team): add ability to report results from multiple workers. first_worker_results = results[0] tune.report(**first_worker_results) # Shutdown workers. backend_executor.shutdown()