def test_no_auto_cpu_params(ray_start_4_cpus, tmpdir): train_dataset = ray.data.from_pandas(train_df) valid_dataset = ray.data.from_pandas(test_df) class DummyPreprocessor(Preprocessor): def __init__(self): super().__init__() self.is_same = True def fit(self, dataset): self.fitted_ = True def _transform_pandas(self, df: "pd.DataFrame") -> "pd.DataFrame": return df trainer = SklearnTrainer( estimator=RandomForestClassifier(n_jobs=1), scaling_config=scale_config, label_column="target", datasets={ TRAIN_DATASET_KEY: train_dataset, "valid": valid_dataset }, preprocessor=DummyPreprocessor(), set_estimator_cpus=False, ) result = trainer.fit() model, _ = load_checkpoint(result.checkpoint) assert model.n_jobs == 1
def test_fit(ray_start_4_cpus): train_dataset = ray.data.from_pandas(train_df) valid_dataset = ray.data.from_pandas(test_df) trainer = SklearnTrainer( estimator=RandomForestClassifier(), scaling_config=scale_config, label_column="target", datasets={ TRAIN_DATASET_KEY: train_dataset, "valid": valid_dataset }, ) result = trainer.fit() assert "valid" in result.metrics assert "cv" not in result.metrics
def test_preprocessor_in_checkpoint(ray_start_4_cpus, tmpdir): train_dataset = ray.data.from_pandas(train_df) valid_dataset = ray.data.from_pandas(test_df) class DummyPreprocessor(Preprocessor): def __init__(self): super().__init__() self.is_same = True def fit(self, dataset): self.fitted_ = True def _transform_pandas(self, df: "pd.DataFrame") -> "pd.DataFrame": return df trainer = SklearnTrainer( estimator=RandomForestClassifier(), scaling_config=scale_config, label_column="target", datasets={ TRAIN_DATASET_KEY: train_dataset, "valid": valid_dataset }, preprocessor=DummyPreprocessor(), ) result = trainer.fit() # Move checkpoint to a different directory. checkpoint_dict = result.checkpoint.to_dict() checkpoint = Checkpoint.from_dict(checkpoint_dict) checkpoint_path = checkpoint.to_directory(tmpdir) resume_from = Checkpoint.from_directory(checkpoint_path) model, preprocessor = load_checkpoint(resume_from) assert hasattr(model, "feature_importances_") assert preprocessor.is_same assert preprocessor.fitted_