示例#1
0
文件: worker.py 项目: haochihlin/ray
class Worker:
    def __init__(
        self,
        conn_str: str = "",
        secure: bool = False,
        metadata: List[Tuple[str, str]] = None,
        connection_retries: int = 3,
        _credentials: Optional[grpc.ChannelCredentials] = None,
    ):
        """Initializes the worker side grpc client.

        Args:
            conn_str: The host:port connection string for the ray server.
            secure: whether to use SSL secure channel or not.
            metadata: additional metadata passed in the grpc request headers.
            connection_retries: Number of times to attempt to reconnect to the
              ray server if it doesn't respond immediately. Setting to 0 tries
              at least once.  For infinite retries, catch the ConnectionError
              exception.
            _credentials: gprc channel credentials. Default ones will be used
              if None.
        """
        self._client_id = make_client_id()
        self.metadata = [("client_id", self._client_id)
                         ] + (metadata if metadata else [])
        self.channel = None
        self.server = None
        self._conn_state = grpc.ChannelConnectivity.IDLE
        self._converted: Dict[str, ClientStub] = {}

        if secure and _credentials is None:
            _credentials = grpc.ssl_channel_credentials()

        if _credentials is not None:
            self.channel = grpc.secure_channel(conn_str,
                                               _credentials,
                                               options=GRPC_OPTIONS)
        else:
            self.channel = grpc.insecure_channel(conn_str,
                                                 options=GRPC_OPTIONS)

        self.channel.subscribe(self._on_channel_state_change)

        # Retry the connection until the channel responds to something
        # looking like a gRPC connection, though it may be a proxy.
        conn_attempts = 0
        timeout = INITIAL_TIMEOUT_SEC
        service_ready = False
        while conn_attempts < max(connection_retries, 1):
            conn_attempts += 1
            try:
                # Let gRPC wait for us to see if the channel becomes ready.
                # If it throws, we couldn't connect.
                grpc.channel_ready_future(self.channel).result(timeout=timeout)
                # The HTTP2 channel is ready. Wrap the channel with the
                # RayletDriverStub, allowing for unary requests.
                self.server = ray_client_pb2_grpc.RayletDriverStub(
                    self.channel)
                service_ready = bool(self.ping_server())
                if service_ready:
                    break
                # Ray is not ready yet, wait a timeout
                time.sleep(timeout)
            except grpc.FutureTimeoutError:
                logger.info(
                    f"Couldn't connect channel in {timeout} seconds, retrying")
                # Note that channel_ready_future constitutes its own timeout,
                # which is why we do not sleep here.
            except grpc.RpcError as e:
                logger.info("Ray client server unavailable, "
                            f"retrying in {timeout}s...")
                logger.debug(f"Received when checking init: {e.details()}")
                # Ray is not ready yet, wait a timeout.
                time.sleep(timeout)
            # Fallthrough, backoff, and retry at the top of the loop
            logger.info("Waiting for Ray to become ready on the server, "
                        f"retry in {timeout}s...")
            timeout = backoff(timeout)

        # If we made it through the loop without service_ready
        # it means we've used up our retries and
        # should error back to the user.
        if not service_ready:
            if log_once("ray_client_security_groups"):
                warnings.warn(
                    "Ray Client connection timed out. Ensure that "
                    "the Ray Client port on the head node is reachable "
                    "from your local machine. See https://docs.ray.io/en"
                    "/latest/cluster/ray-client.html#step-2-check-ports for "
                    "more information.")
            raise ConnectionError("ray client connection timeout")

        # Initialize the streams to finish protocol negotiation.
        self.data_client = DataClient(self.channel, self._client_id,
                                      self.metadata)
        self.reference_count: Dict[bytes, int] = defaultdict(int)

        self.log_client = LogstreamClient(self.channel, self.metadata)
        self.log_client.set_logstream_level(logging.INFO)

        self.closed = False

        # Track these values to raise a warning if many tasks are being
        # scheduled
        self.total_num_tasks_scheduled = 0
        self.total_outbound_message_size_bytes = 0

    def _on_channel_state_change(self, conn_state: grpc.ChannelConnectivity):
        logger.debug(f"client gRPC channel state change: {conn_state}")
        self._conn_state = conn_state

    def connection_info(self):
        try:
            data = self.data_client.ConnectionInfo()
        except grpc.RpcError as e:
            raise decode_exception(e.details())
        return {
            "num_clients": data.num_clients,
            "python_version": data.python_version,
            "ray_version": data.ray_version,
            "ray_commit": data.ray_commit,
            "protocol_version": data.protocol_version,
        }

    def register_callback(
            self, ref: ClientObjectRef,
            callback: Callable[[ray_client_pb2.DataResponse], None]) -> None:
        req = ray_client_pb2.GetRequest(ids=[ref.id], asynchronous=True)
        self.data_client.RegisterGetCallback(req, callback)

    def get(self, vals, *, timeout: Optional[float] = None) -> Any:
        if isinstance(vals, list):
            if not vals:
                return []
            to_get = vals
        elif isinstance(vals, ClientObjectRef):
            to_get = [vals]
        else:
            raise Exception("Can't get something that's not a "
                            "list of IDs or just an ID: %s" % type(vals))

        if timeout is None:
            deadline = None
        else:
            deadline = time.monotonic() + timeout

        while True:
            if deadline:
                op_timeout = min(MAX_BLOCKING_OPERATION_TIME_S,
                                 max(deadline - time.monotonic(), 0.001))
            else:
                op_timeout = MAX_BLOCKING_OPERATION_TIME_S
            try:
                res = self._get(to_get, op_timeout)
                break
            except GetTimeoutError:
                if deadline and time.monotonic() > deadline:
                    raise
                logger.debug("Internal retry for get {}".format(to_get))
        if len(to_get) != len(res):
            raise Exception(
                "Mismatched number of items in request ({}) and response ({})".
                format(len(to_get), len(res)))
        if isinstance(vals, ClientObjectRef):
            res = res[0]
        return res

    def _get(self, ref: List[ClientObjectRef], timeout: float):
        req = ray_client_pb2.GetRequest(ids=[r.id for r in ref],
                                        timeout=timeout)
        try:
            data = self.data_client.GetObject(req)
        except grpc.RpcError as e:
            raise decode_exception(e.details())
        if not data.valid:
            try:
                err = cloudpickle.loads(data.error)
            except (pickle.UnpicklingError, TypeError):
                logger.exception("Failed to deserialize {}".format(data.error))
                raise
            raise err
        return loads_from_server(data.data)

    def put(self, vals, *, client_ref_id: bytes = None):
        to_put = []
        single = False
        if isinstance(vals, list):
            to_put = vals
        else:
            single = True
            to_put.append(vals)

        out = [self._put(x, client_ref_id=client_ref_id) for x in to_put]
        if single:
            out = out[0]
        return out

    def _put(self, val, *, client_ref_id: bytes = None):
        if isinstance(val, ClientObjectRef):
            raise TypeError(
                "Calling 'put' on an ObjectRef is not allowed "
                "(similarly, returning an ObjectRef from a remote "
                "function is not allowed). If you really want to "
                "do this, you can wrap the ObjectRef in a list and "
                "call 'put' on it (or return it).")
        data = dumps_from_client(val, self._client_id)
        req = ray_client_pb2.PutRequest(data=data)
        if client_ref_id is not None:
            req.client_ref_id = client_ref_id
        resp = self.data_client.PutObject(req)
        if not resp.valid:
            try:
                raise cloudpickle.loads(resp.error)
            except (pickle.UnpicklingError, TypeError):
                logger.exception("Failed to deserialize {}".format(resp.error))
                raise
        return ClientObjectRef(resp.id)

    # TODO(ekl) respect MAX_BLOCKING_OPERATION_TIME_S for wait too
    def wait(
        self,
        object_refs: List[ClientObjectRef],
        *,
        num_returns: int = 1,
        timeout: float = None,
        fetch_local: bool = True
    ) -> Tuple[List[ClientObjectRef], List[ClientObjectRef]]:
        if not isinstance(object_refs, list):
            raise TypeError("wait() expected a list of ClientObjectRef, "
                            f"got {type(object_refs)}")
        for ref in object_refs:
            if not isinstance(ref, ClientObjectRef):
                raise TypeError("wait() expected a list of ClientObjectRef, "
                                f"got list containing {type(ref)}")
        data = {
            "object_ids": [object_ref.id for object_ref in object_refs],
            "num_returns": num_returns,
            "timeout": timeout if (timeout is not None) else -1,
            "client_id": self._client_id,
        }
        req = ray_client_pb2.WaitRequest(**data)
        resp = self.server.WaitObject(req, metadata=self.metadata)
        if not resp.valid:
            # TODO(ameer): improve error/exceptions messages.
            raise Exception("Client Wait request failed. Reference invalid?")
        client_ready_object_ids = [
            ClientObjectRef(ref) for ref in resp.ready_object_ids
        ]
        client_remaining_object_ids = [
            ClientObjectRef(ref) for ref in resp.remaining_object_ids
        ]

        return (client_ready_object_ids, client_remaining_object_ids)

    def call_remote(self, instance, *args, **kwargs) -> List[bytes]:
        task = instance._prepare_client_task()
        for arg in args:
            pb_arg = convert_to_arg(arg, self._client_id)
            task.args.append(pb_arg)
        for k, v in kwargs.items():
            task.kwargs[k].CopyFrom(convert_to_arg(v, self._client_id))
        return self._call_schedule_for_task(task)

    def _call_schedule_for_task(
            self, task: ray_client_pb2.ClientTask) -> List[bytes]:
        logger.debug("Scheduling %s" % task)
        task.client_id = self._client_id
        try:
            ticket = self.server.Schedule(task, metadata=self.metadata)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

        if not ticket.valid:
            try:
                raise cloudpickle.loads(ticket.error)
            except (pickle.UnpicklingError, TypeError):
                logger.exception("Failed to deserialize {}".format(
                    ticket.error))
                raise
        self.total_num_tasks_scheduled += 1
        self.total_outbound_message_size_bytes += task.ByteSize()
        if self.total_num_tasks_scheduled > TASK_WARNING_THRESHOLD and \
                log_once("client_communication_overhead_warning"):
            warnings.warn(
                f"More than {TASK_WARNING_THRESHOLD} remote tasks have been "
                "scheduled. This can be slow on Ray Client due to "
                "communication overhead over the network. If you're running "
                "many fine-grained tasks, consider running them in a single "
                "remote function. See the section on \"Too fine-grained "
                "tasks\" in the Ray Design Patterns document for more "
                f"details: {DESIGN_PATTERN_FINE_GRAIN_TASKS_LINK}",
                UserWarning)
        if self.total_outbound_message_size_bytes > MESSAGE_SIZE_THRESHOLD \
                and log_once("client_communication_overhead_warning"):
            warnings.warn(
                "More than 10MB of messages have been created to schedule "
                "tasks on the server. This can be slow on Ray Client due to "
                "communication overhead over the network. If you're running "
                "many fine-grained tasks, consider running them inside a "
                "single remote function. See the section on \"Too "
                "fine-grained tasks\" in the Ray Design Patterns document for "
                f"more details: {DESIGN_PATTERN_FINE_GRAIN_TASKS_LINK}. If "
                "your functions frequently use large objects, consider "
                "storing the objects remotely with ray.put. An example of "
                "this is shown in the \"Closure capture of large / "
                "unserializable object\" section of the Ray Design Patterns "
                "document, available here: "
                f"{DESIGN_PATTERN_LARGE_OBJECTS_LINK}", UserWarning)
        return ticket.return_ids

    def call_release(self, id: bytes) -> None:
        if self.closed:
            return
        self.reference_count[id] -= 1
        if self.reference_count[id] == 0:
            self._release_server(id)
            del self.reference_count[id]

    def _release_server(self, id: bytes) -> None:
        if self.data_client is not None:
            logger.debug(f"Releasing {id.hex()}")
            self.data_client.ReleaseObject(
                ray_client_pb2.ReleaseRequest(ids=[id]))

    def call_retain(self, id: bytes) -> None:
        logger.debug(f"Retaining {id.hex()}")
        self.reference_count[id] += 1

    def close(self):
        self.data_client.close()
        self.log_client.close()
        if self.channel:
            self.channel.close()
            self.channel = None
        self.server = None
        self.closed = True

    def get_actor(self,
                  name: str,
                  namespace: Optional[str] = None) -> ClientActorHandle:
        task = ray_client_pb2.ClientTask()
        task.type = ray_client_pb2.ClientTask.NAMED_ACTOR
        task.name = name
        task.namespace = namespace or ""
        ids = self._call_schedule_for_task(task)
        assert len(ids) == 1
        return ClientActorHandle(ClientActorRef(ids[0]))

    def terminate_actor(self, actor: ClientActorHandle,
                        no_restart: bool) -> None:
        if not isinstance(actor, ClientActorHandle):
            raise ValueError("ray.kill() only supported for actors. "
                             "Got: {}.".format(type(actor)))
        term_actor = ray_client_pb2.TerminateRequest.ActorTerminate()
        term_actor.id = actor.actor_ref.id
        term_actor.no_restart = no_restart
        try:
            term = ray_client_pb2.TerminateRequest(actor=term_actor)
            term.client_id = self._client_id
            self.server.Terminate(term, metadata=self.metadata)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def terminate_task(self, obj: ClientObjectRef, force: bool,
                       recursive: bool) -> None:
        if not isinstance(obj, ClientObjectRef):
            raise TypeError(
                "ray.cancel() only supported for non-actor object refs. "
                f"Got: {type(obj)}.")
        term_object = ray_client_pb2.TerminateRequest.TaskObjectTerminate()
        term_object.id = obj.id
        term_object.force = force
        term_object.recursive = recursive
        try:
            term = ray_client_pb2.TerminateRequest(task_object=term_object)
            term.client_id = self._client_id
            self.server.Terminate(term, metadata=self.metadata)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def get_cluster_info(self, type: ray_client_pb2.ClusterInfoType.TypeEnum):
        req = ray_client_pb2.ClusterInfoRequest()
        req.type = type
        resp = self.server.ClusterInfo(req, metadata=self.metadata)
        if resp.WhichOneof("response_type") == "resource_table":
            # translate from a proto map to a python dict
            output_dict = {k: v for k, v in resp.resource_table.table.items()}
            return output_dict
        elif resp.WhichOneof("response_type") == "runtime_context":
            return resp.runtime_context
        return json.loads(resp.json)

    def internal_kv_get(self, key: bytes) -> bytes:
        req = ray_client_pb2.KVGetRequest(key=key)
        resp = self.server.KVGet(req, metadata=self.metadata)
        return resp.value

    def internal_kv_exists(self, key: bytes) -> bytes:
        req = ray_client_pb2.KVGetRequest(key=key)
        resp = self.server.KVGet(req, metadata=self.metadata)
        return resp.value

    def internal_kv_put(self, key: bytes, value: bytes,
                        overwrite: bool) -> bool:
        req = ray_client_pb2.KVPutRequest(key=key,
                                          value=value,
                                          overwrite=overwrite)
        resp = self.server.KVPut(req, metadata=self.metadata)
        return resp.already_exists

    def internal_kv_del(self, key: bytes) -> None:
        req = ray_client_pb2.KVDelRequest(key=key)
        self.server.KVDel(req, metadata=self.metadata)

    def internal_kv_list(self, prefix: bytes) -> bytes:
        req = ray_client_pb2.KVListRequest(prefix=prefix)
        return self.server.KVList(req, metadata=self.metadata).keys

    def list_named_actors(self, all_namespaces: bool) -> List[Dict[str, str]]:
        req = ray_client_pb2.ClientListNamedActorsRequest(
            all_namespaces=all_namespaces)
        return json.loads(
            self.server.ListNamedActors(req,
                                        metadata=self.metadata).actors_json)

    def is_initialized(self) -> bool:
        if self.server is not None:
            return self.get_cluster_info(
                ray_client_pb2.ClusterInfoType.IS_INITIALIZED)
        return False

    def ping_server(self) -> bool:
        """Simple health check.

        Piggybacks the IS_INITIALIZED call to check if the server provides
        an actual response.
        """
        if self.server is not None:
            logger.debug("Pinging server.")
            result = self.get_cluster_info(ray_client_pb2.ClusterInfoType.PING)
            return result is not None
        return False

    def is_connected(self) -> bool:
        return self._conn_state == grpc.ChannelConnectivity.READY

    def _server_init(self,
                     job_config: JobConfig,
                     ray_init_kwargs: Optional[Dict[str, Any]] = None):
        """Initialize the server"""
        if ray_init_kwargs is None:
            ray_init_kwargs = {}
        try:
            if job_config is None:
                serialized_job_config = None
            else:
                # Generate and upload URIs for the working directory. This
                # uses internal_kv to upload to the GCS.
                import ray._private.runtime_env.working_dir as working_dir_pkg
                with tempfile.TemporaryDirectory() as tmp_dir:
                    (old_dir,
                     working_dir_pkg.PKG_DIR) = (working_dir_pkg.PKG_DIR,
                                                 tmp_dir)
                    working_dir_pkg.rewrite_runtime_env_uris(job_config)
                    working_dir_pkg.upload_runtime_env_package_if_needed(
                        job_config)
                    working_dir_pkg.PKG_DIR = old_dir

                serialized_job_config = pickle.dumps(job_config)

            response = self.data_client.Init(
                ray_client_pb2.InitRequest(
                    job_config=serialized_job_config,
                    ray_init_kwargs=json.dumps(ray_init_kwargs)))
            if not response.ok:
                raise ConnectionAbortedError(
                    f"Initialization failure from server:\n{response.msg}")

        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def _convert_actor(self, actor: "ActorClass") -> str:
        """Register a ClientActorClass for the ActorClass and return a UUID"""
        key = uuid.uuid4().hex
        md = actor.__ray_metadata__
        cls = md.modified_class
        self._converted[key] = ClientActorClass(cls,
                                                options={
                                                    "max_restarts":
                                                    md.max_restarts,
                                                    "max_task_retries":
                                                    md.max_task_retries,
                                                    "num_cpus":
                                                    md.num_cpus,
                                                    "num_gpus":
                                                    md.num_gpus,
                                                    "memory":
                                                    md.memory,
                                                    "object_store_memory":
                                                    md.object_store_memory,
                                                    "resources":
                                                    md.resources,
                                                    "accelerator_type":
                                                    md.accelerator_type,
                                                })
        return key

    def _convert_function(self, func: "RemoteFunction") -> str:
        """Register a ClientRemoteFunc for the ActorClass and return a UUID"""
        key = uuid.uuid4().hex
        f = func._function
        self._converted[key] = ClientRemoteFunc(
            f,
            options={
                "num_cpus": func._num_cpus,
                "num_gpus": func._num_gpus,
                "max_calls": func._max_calls,
                "max_retries": func._max_retries,
                "resources": func._resources,
                "accelerator_type": func._accelerator_type,
                "num_returns": func._num_returns,
                "memory": func._memory
            })
        return key

    def _get_converted(self, key: str) -> "ClientStub":
        """Given a UUID, return the converted object"""
        return self._converted[key]

    def _converted_key_exists(self, key: str) -> bool:
        """Check if a key UUID is present in the store of converted objects."""
        return key in self._converted
示例#2
0
class Worker:
    def __init__(self,
                 conn_str: str = "",
                 secure: bool = False,
                 metadata: List[Tuple[str, str]] = None,
                 connection_retries: int = 3):
        """Initializes the worker side grpc client.

        Args:
            conn_str: The host:port connection string for the ray server.
            secure: whether to use SSL secure channel or not.
            metadata: additional metadata passed in the grpc request headers.
            connection_retries: Number of times to attempt to reconnect to the
              ray server if it doesn't respond immediately. Setting to 0 tries
              at least once.  For infinite retries, catch the ConnectionError
              exception.
        """
        self.metadata = metadata if metadata else []
        self.channel = None
        self._conn_state = grpc.ChannelConnectivity.IDLE
        self._client_id = make_client_id()
        if secure:
            credentials = grpc.ssl_channel_credentials()
            self.channel = grpc.secure_channel(conn_str, credentials)
        else:
            self.channel = grpc.insecure_channel(conn_str)

        self.channel.subscribe(self._on_channel_state_change)

        # Retry the connection until the channel responds to something
        # looking like a gRPC connection, though it may be a proxy.
        conn_attempts = 0
        timeout = INITIAL_TIMEOUT_SEC
        ray_ready = False
        while conn_attempts < max(connection_retries, 1):
            conn_attempts += 1
            try:
                # Let gRPC wait for us to see if the channel becomes ready.
                # If it throws, we couldn't connect.
                grpc.channel_ready_future(self.channel).result(timeout=timeout)
                # The HTTP2 channel is ready. Wrap the channel with the
                # RayletDriverStub, allowing for unary requests.
                self.server = ray_client_pb2_grpc.RayletDriverStub(
                    self.channel)
                # Now the HTTP2 channel is ready, or proxied, but the
                # servicer may not be ready. Call is_initialized() and if
                # it throws, the servicer is not ready. On success, the
                # `ray_ready` result is checked.
                ray_ready = self.is_initialized()
                if ray_ready:
                    # Ray is ready! Break out of the retry loop
                    break
                # Ray is not ready yet, wait a timeout
                time.sleep(timeout)
            except grpc.FutureTimeoutError:
                logger.info(
                    f"Couldn't connect channel in {timeout} seconds, retrying")
                # Note that channel_ready_future constitutes its own timeout,
                # which is why we do not sleep here.
            except grpc.RpcError as e:
                logger.info("Ray client server unavailable, "
                            f"retrying in {timeout}s...")
                logger.debug(f"Received when checking init: {e.details()}")
                # Ray is not ready yet, wait a timeout.
                time.sleep(timeout)
            # Fallthrough, backoff, and retry at the top of the loop
            logger.info("Waiting for Ray to become ready on the server, "
                        f"retry in {timeout}s...")
            timeout = backoff(timeout)

        # If we made it through the loop without ray_ready it means we've used
        # up our retries and should error back to the user.
        if not ray_ready:
            raise ConnectionError("ray client connection timeout")

        # Initialize the streams to finish protocol negotiation.
        self.data_client = DataClient(self.channel, self._client_id,
                                      self.metadata)
        self.reference_count: Dict[bytes, int] = defaultdict(int)

        self.log_client = LogstreamClient(self.channel, self.metadata)
        self.log_client.set_logstream_level(logging.INFO)
        self.closed = False

    def _on_channel_state_change(self, conn_state: grpc.ChannelConnectivity):
        logger.debug(f"client gRPC channel state change: {conn_state}")
        self._conn_state = conn_state

    def connection_info(self):
        try:
            data = self.data_client.ConnectionInfo()
        except grpc.RpcError as e:
            raise e.details()
        return {
            "num_clients": data.num_clients,
            "python_version": data.python_version,
            "ray_version": data.ray_version,
            "ray_commit": data.ray_commit,
            "protocol_version": data.protocol_version,
        }

    def get(self, vals, *, timeout: Optional[float] = None) -> Any:
        to_get = []
        single = False
        if isinstance(vals, list):
            to_get = vals
        elif isinstance(vals, ClientObjectRef):
            to_get = [vals]
            single = True
        else:
            raise Exception("Can't get something that's not a "
                            "list of IDs or just an ID: %s" % type(vals))
        if timeout is None:
            timeout = 0
        out = [self._get(x, timeout) for x in to_get]
        if single:
            out = out[0]
        return out

    def _get(self, ref: ClientObjectRef, timeout: float):
        req = ray_client_pb2.GetRequest(id=ref.id, timeout=timeout)
        try:
            data = self.data_client.GetObject(req)
        except grpc.RpcError as e:
            raise e.details()
        if not data.valid:
            try:
                err = cloudpickle.loads(data.error)
            except Exception:
                logger.exception("Failed to deserialize {}".format(data.error))
                raise
            logger.error(err)
            raise err
        return loads_from_server(data.data)

    def put(self, vals):
        to_put = []
        single = False
        if isinstance(vals, list):
            to_put = vals
        else:
            single = True
            to_put.append(vals)

        out = [self._put(x) for x in to_put]
        if single:
            out = out[0]
        return out

    def _put(self, val):
        if isinstance(val, ClientObjectRef):
            raise TypeError(
                "Calling 'put' on an ObjectRef is not allowed "
                "(similarly, returning an ObjectRef from a remote "
                "function is not allowed). If you really want to "
                "do this, you can wrap the ObjectRef in a list and "
                "call 'put' on it (or return it).")
        data = dumps_from_client(val, self._client_id)
        req = ray_client_pb2.PutRequest(data=data)
        resp = self.data_client.PutObject(req)
        return ClientObjectRef(resp.id)

    def wait(
        self,
        object_refs: List[ClientObjectRef],
        *,
        num_returns: int = 1,
        timeout: float = None,
        fetch_local: bool = True
    ) -> Tuple[List[ClientObjectRef], List[ClientObjectRef]]:
        if not isinstance(object_refs, list):
            raise TypeError("wait() expected a list of ClientObjectRef, "
                            f"got {type(object_refs)}")
        for ref in object_refs:
            if not isinstance(ref, ClientObjectRef):
                raise TypeError("wait() expected a list of ClientObjectRef, "
                                f"got list containing {type(ref)}")
        data = {
            "object_ids": [object_ref.id for object_ref in object_refs],
            "num_returns": num_returns,
            "timeout": timeout if timeout else -1,
            "client_id": self._client_id,
        }
        req = ray_client_pb2.WaitRequest(**data)
        resp = self.server.WaitObject(req, metadata=self.metadata)
        if not resp.valid:
            # TODO(ameer): improve error/exceptions messages.
            raise Exception("Client Wait request failed. Reference invalid?")
        client_ready_object_ids = [
            ClientObjectRef(ref) for ref in resp.ready_object_ids
        ]
        client_remaining_object_ids = [
            ClientObjectRef(ref) for ref in resp.remaining_object_ids
        ]

        return (client_ready_object_ids, client_remaining_object_ids)

    def call_remote(self, instance, *args, **kwargs) -> List[bytes]:
        task = instance._prepare_client_task()
        for arg in args:
            pb_arg = convert_to_arg(arg, self._client_id)
            task.args.append(pb_arg)
        for k, v in kwargs.items():
            task.kwargs[k].CopyFrom(convert_to_arg(v, self._client_id))
        return self._call_schedule_for_task(task)

    def _call_schedule_for_task(
            self, task: ray_client_pb2.ClientTask) -> List[bytes]:
        logger.debug("Scheduling %s" % task)
        task.client_id = self._client_id
        try:
            ticket = self.server.Schedule(task, metadata=self.metadata)
        except grpc.RpcError as e:
            raise decode_exception(e.details)
        if not ticket.valid:
            try:
                raise cloudpickle.loads(ticket.error)
            except Exception:
                logger.exception("Failed to deserialize {}".format(
                    ticket.error))
                raise
        return ticket.return_ids

    def call_release(self, id: bytes) -> None:
        if self.closed:
            return
        self.reference_count[id] -= 1
        if self.reference_count[id] == 0:
            self._release_server(id)
            del self.reference_count[id]

    def _release_server(self, id: bytes) -> None:
        if self.data_client is not None:
            logger.debug(f"Releasing {id}")
            self.data_client.ReleaseObject(
                ray_client_pb2.ReleaseRequest(ids=[id]))

    def call_retain(self, id: bytes) -> None:
        logger.debug(f"Retaining {id.hex()}")
        self.reference_count[id] += 1

    def close(self):
        self.log_client.close()
        self.data_client.close()
        if self.channel:
            self.channel.close()
            self.channel = None
        self.server = None
        self.closed = True

    def get_actor(self, name: str) -> ClientActorHandle:
        task = ray_client_pb2.ClientTask()
        task.type = ray_client_pb2.ClientTask.NAMED_ACTOR
        task.name = name
        ids = self._call_schedule_for_task(task)
        assert len(ids) == 1
        return ClientActorHandle(ClientActorRef(ids[0]))

    def terminate_actor(self, actor: ClientActorHandle,
                        no_restart: bool) -> None:
        if not isinstance(actor, ClientActorHandle):
            raise ValueError("ray.kill() only supported for actors. "
                             "Got: {}.".format(type(actor)))
        term_actor = ray_client_pb2.TerminateRequest.ActorTerminate()
        term_actor.id = actor.actor_ref.id
        term_actor.no_restart = no_restart
        try:
            term = ray_client_pb2.TerminateRequest(actor=term_actor)
            term.client_id = self._client_id
            self.server.Terminate(term)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def terminate_task(self, obj: ClientObjectRef, force: bool,
                       recursive: bool) -> None:
        if not isinstance(obj, ClientObjectRef):
            raise TypeError(
                "ray.cancel() only supported for non-actor object refs. "
                f"Got: {type(obj)}.")
        term_object = ray_client_pb2.TerminateRequest.TaskObjectTerminate()
        term_object.id = obj.id
        term_object.force = force
        term_object.recursive = recursive
        try:
            term = ray_client_pb2.TerminateRequest(task_object=term_object)
            term.client_id = self._client_id
            self.server.Terminate(term)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def get_cluster_info(self, type: ray_client_pb2.ClusterInfoType.TypeEnum):
        req = ray_client_pb2.ClusterInfoRequest()
        req.type = type
        resp = self.server.ClusterInfo(req, metadata=self.metadata)
        if resp.WhichOneof("response_type") == "resource_table":
            # translate from a proto map to a python dict
            output_dict = {k: v for k, v in resp.resource_table.table.items()}
            return output_dict
        elif resp.WhichOneof("response_type") == "runtime_context":
            return resp.runtime_context
        return json.loads(resp.json)

    def internal_kv_get(self, key: bytes) -> bytes:
        req = ray_client_pb2.KVGetRequest(key=key)
        resp = self.server.KVGet(req, metadata=self.metadata)
        return resp.value

    def internal_kv_put(self, key: bytes, value: bytes,
                        overwrite: bool) -> bool:
        req = ray_client_pb2.KVPutRequest(key=key,
                                          value=value,
                                          overwrite=overwrite)
        resp = self.server.KVPut(req, metadata=self.metadata)
        return resp.already_exists

    def internal_kv_del(self, key: bytes) -> None:
        req = ray_client_pb2.KVDelRequest(key=key)
        self.server.KVDel(req, metadata=self.metadata)

    def internal_kv_list(self, prefix: bytes) -> bytes:
        req = ray_client_pb2.KVListRequest(prefix=prefix)
        return self.server.KVList(req, metadata=self.metadata).keys

    def is_initialized(self) -> bool:
        if self.server is not None:
            return self.get_cluster_info(
                ray_client_pb2.ClusterInfoType.IS_INITIALIZED)
        return False

    def is_connected(self) -> bool:
        return self._conn_state == grpc.ChannelConnectivity.READY
示例#3
0
class Worker:
    def __init__(self,
                 conn_str: str = "",
                 secure: bool = False,
                 metadata: List[Tuple[str, str]] = None,
                 connection_retries: int = 3):
        """Initializes the worker side grpc client.

        Args:
            conn_str: The host:port connection string for the ray server.
            secure: whether to use SSL secure channel or not.
            metadata: additional metadata passed in the grpc request headers.
            connection_retries: Number of times to attempt to reconnect to the
              ray server if it doesn't respond immediately. Setting to 0 tries
              at least once.  For infinite retries, catch the ConnectionError
              exception.
        """
        self.metadata = metadata if metadata else []
        self.channel = None
        self.server = None
        self._conn_state = grpc.ChannelConnectivity.IDLE
        self._client_id = make_client_id()
        self._converted: Dict[str, ClientStub] = {}

        grpc_options = [
            ("grpc.max_send_message_length", GRPC_MAX_MESSAGE_SIZE),
            ("grpc.max_receive_message_length", GRPC_MAX_MESSAGE_SIZE),
        ]
        if secure:
            credentials = grpc.ssl_channel_credentials()
            self.channel = grpc.secure_channel(
                conn_str, credentials, options=grpc_options)
        else:
            self.channel = grpc.insecure_channel(
                conn_str, options=grpc_options)

        self.channel.subscribe(self._on_channel_state_change)

        # Retry the connection until the channel responds to something
        # looking like a gRPC connection, though it may be a proxy.
        conn_attempts = 0
        timeout = INITIAL_TIMEOUT_SEC
        service_ready = False
        while conn_attempts < max(connection_retries, 1):
            conn_attempts += 1
            try:
                # Let gRPC wait for us to see if the channel becomes ready.
                # If it throws, we couldn't connect.
                grpc.channel_ready_future(self.channel).result(timeout=timeout)
                # The HTTP2 channel is ready. Wrap the channel with the
                # RayletDriverStub, allowing for unary requests.
                self.server = ray_client_pb2_grpc.RayletDriverStub(
                    self.channel)
                service_ready = bool(self.ping_server())
                if service_ready:
                    break
                # Ray is not ready yet, wait a timeout
                time.sleep(timeout)
            except grpc.FutureTimeoutError:
                logger.info(
                    f"Couldn't connect channel in {timeout} seconds, retrying")
                # Note that channel_ready_future constitutes its own timeout,
                # which is why we do not sleep here.
            except grpc.RpcError as e:
                logger.info("Ray client server unavailable, "
                            f"retrying in {timeout}s...")
                logger.debug(f"Received when checking init: {e.details()}")
                # Ray is not ready yet, wait a timeout.
                time.sleep(timeout)
            # Fallthrough, backoff, and retry at the top of the loop
            logger.info("Waiting for Ray to become ready on the server, "
                        f"retry in {timeout}s...")
            timeout = backoff(timeout)

        # If we made it through the loop without service_ready
        # it means we've used up our retries and
        # should error back to the user.
        if not service_ready:
            raise ConnectionError("ray client connection timeout")

        # Initialize the streams to finish protocol negotiation.
        self.data_client = DataClient(self.channel, self._client_id,
                                      self.metadata)
        self.reference_count: Dict[bytes, int] = defaultdict(int)

        self.log_client = LogstreamClient(self.channel, self.metadata)
        self.log_client.set_logstream_level(logging.INFO)

        self.closed = False

    def _on_channel_state_change(self, conn_state: grpc.ChannelConnectivity):
        logger.debug(f"client gRPC channel state change: {conn_state}")
        self._conn_state = conn_state

    def connection_info(self):
        try:
            data = self.data_client.ConnectionInfo()
        except grpc.RpcError as e:
            raise decode_exception(e.details())
        return {
            "num_clients": data.num_clients,
            "python_version": data.python_version,
            "ray_version": data.ray_version,
            "ray_commit": data.ray_commit,
            "protocol_version": data.protocol_version,
        }

    def get(self, vals, *, timeout: Optional[float] = None) -> Any:
        to_get = []
        single = False
        if isinstance(vals, list):
            to_get = vals
        elif isinstance(vals, ClientObjectRef):
            to_get = [vals]
            single = True
        else:
            raise Exception("Can't get something that's not a "
                            "list of IDs or just an ID: %s" % type(vals))
        if timeout is None:
            timeout = 0
            deadline = None
        else:
            deadline = time.monotonic() + timeout
        out = []
        for obj_ref in to_get:
            res = None
            # Implement non-blocking get with a short-polling loop. This allows
            # cancellation of gets via Ctrl-C, since we never block for long.
            while True:
                try:
                    if deadline:
                        op_timeout = min(
                            MAX_BLOCKING_OPERATION_TIME_S,
                            max(deadline - time.monotonic(), 0.001))
                    else:
                        op_timeout = MAX_BLOCKING_OPERATION_TIME_S
                    res = self._get(obj_ref, op_timeout)
                    break
                except GetTimeoutError:
                    if deadline and time.monotonic() > deadline:
                        raise
                    logger.debug("Internal retry for get {}".format(obj_ref))
            out.append(res)
        if single:
            out = out[0]
        return out

    def _get(self, ref: ClientObjectRef, timeout: float):
        req = ray_client_pb2.GetRequest(id=ref.id, timeout=timeout)
        try:
            data = self.data_client.GetObject(req)
        except grpc.RpcError as e:
            raise decode_exception(e.details())
        if not data.valid:
            try:
                err = cloudpickle.loads(data.error)
            except pickle.UnpicklingError:
                logger.exception("Failed to deserialize {}".format(data.error))
                raise
            raise err
        return loads_from_server(data.data)

    def put(self, vals, *, client_ref_id: bytes = None):
        to_put = []
        single = False
        if isinstance(vals, list):
            to_put = vals
        else:
            single = True
            to_put.append(vals)

        out = [self._put(x, client_ref_id=client_ref_id) for x in to_put]
        if single:
            out = out[0]
        return out

    def _put(self, val, *, client_ref_id: bytes = None):
        if isinstance(val, ClientObjectRef):
            raise TypeError(
                "Calling 'put' on an ObjectRef is not allowed "
                "(similarly, returning an ObjectRef from a remote "
                "function is not allowed). If you really want to "
                "do this, you can wrap the ObjectRef in a list and "
                "call 'put' on it (or return it).")
        data = dumps_from_client(val, self._client_id)
        req = ray_client_pb2.PutRequest(data=data)
        if client_ref_id is not None:
            req.client_ref_id = client_ref_id
        resp = self.data_client.PutObject(req)
        return ClientObjectRef(resp.id)

    # TODO(ekl) respect MAX_BLOCKING_OPERATION_TIME_S for wait too
    def wait(self,
             object_refs: List[ClientObjectRef],
             *,
             num_returns: int = 1,
             timeout: float = None,
             fetch_local: bool = True
             ) -> Tuple[List[ClientObjectRef], List[ClientObjectRef]]:
        if not isinstance(object_refs, list):
            raise TypeError("wait() expected a list of ClientObjectRef, "
                            f"got {type(object_refs)}")
        for ref in object_refs:
            if not isinstance(ref, ClientObjectRef):
                raise TypeError("wait() expected a list of ClientObjectRef, "
                                f"got list containing {type(ref)}")
        data = {
            "object_ids": [object_ref.id for object_ref in object_refs],
            "num_returns": num_returns,
            "timeout": timeout if timeout else -1,
            "client_id": self._client_id,
        }
        req = ray_client_pb2.WaitRequest(**data)
        resp = self.server.WaitObject(req, metadata=self.metadata)
        if not resp.valid:
            # TODO(ameer): improve error/exceptions messages.
            raise Exception("Client Wait request failed. Reference invalid?")
        client_ready_object_ids = [
            ClientObjectRef(ref) for ref in resp.ready_object_ids
        ]
        client_remaining_object_ids = [
            ClientObjectRef(ref) for ref in resp.remaining_object_ids
        ]

        return (client_ready_object_ids, client_remaining_object_ids)

    def call_remote(self, instance, *args, **kwargs) -> List[bytes]:
        task = instance._prepare_client_task()
        for arg in args:
            pb_arg = convert_to_arg(arg, self._client_id)
            task.args.append(pb_arg)
        for k, v in kwargs.items():
            task.kwargs[k].CopyFrom(convert_to_arg(v, self._client_id))
        return self._call_schedule_for_task(task)

    def _call_schedule_for_task(
            self, task: ray_client_pb2.ClientTask) -> List[bytes]:
        logger.debug("Scheduling %s" % task)
        task.client_id = self._client_id
        try:
            ticket = self.server.Schedule(task, metadata=self.metadata)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

        if not ticket.valid:
            try:
                raise cloudpickle.loads(ticket.error)
            except pickle.UnpicklingError:
                logger.exception("Failed to deserialize {}".format(
                    ticket.error))
                raise
        return ticket.return_ids

    def call_release(self, id: bytes) -> None:
        if self.closed:
            return
        self.reference_count[id] -= 1
        if self.reference_count[id] == 0:
            self._release_server(id)
            del self.reference_count[id]

    def _release_server(self, id: bytes) -> None:
        if self.data_client is not None:
            logger.debug(f"Releasing {id}")
            self.data_client.ReleaseObject(
                ray_client_pb2.ReleaseRequest(ids=[id]))

    def call_retain(self, id: bytes) -> None:
        logger.debug(f"Retaining {id.hex()}")
        self.reference_count[id] += 1

    def close(self):
        self.log_client.close()
        self.data_client.close()
        if self.channel:
            self.channel.close()
            self.channel = None
        self.server = None
        self.closed = True

    def get_actor(self, name: str) -> ClientActorHandle:
        task = ray_client_pb2.ClientTask()
        task.type = ray_client_pb2.ClientTask.NAMED_ACTOR
        task.name = name
        ids = self._call_schedule_for_task(task)
        assert len(ids) == 1
        return ClientActorHandle(ClientActorRef(ids[0]))

    def terminate_actor(self, actor: ClientActorHandle,
                        no_restart: bool) -> None:
        if not isinstance(actor, ClientActorHandle):
            raise ValueError("ray.kill() only supported for actors. "
                             "Got: {}.".format(type(actor)))
        term_actor = ray_client_pb2.TerminateRequest.ActorTerminate()
        term_actor.id = actor.actor_ref.id
        term_actor.no_restart = no_restart
        try:
            term = ray_client_pb2.TerminateRequest(actor=term_actor)
            term.client_id = self._client_id
            self.server.Terminate(term)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def terminate_task(self, obj: ClientObjectRef, force: bool,
                       recursive: bool) -> None:
        if not isinstance(obj, ClientObjectRef):
            raise TypeError(
                "ray.cancel() only supported for non-actor object refs. "
                f"Got: {type(obj)}.")
        term_object = ray_client_pb2.TerminateRequest.TaskObjectTerminate()
        term_object.id = obj.id
        term_object.force = force
        term_object.recursive = recursive
        try:
            term = ray_client_pb2.TerminateRequest(task_object=term_object)
            term.client_id = self._client_id
            self.server.Terminate(term)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def get_cluster_info(self, type: ray_client_pb2.ClusterInfoType.TypeEnum):
        req = ray_client_pb2.ClusterInfoRequest()
        req.type = type
        resp = self.server.ClusterInfo(req, metadata=self.metadata)
        if resp.WhichOneof("response_type") == "resource_table":
            # translate from a proto map to a python dict
            output_dict = {k: v for k, v in resp.resource_table.table.items()}
            return output_dict
        elif resp.WhichOneof("response_type") == "runtime_context":
            return resp.runtime_context
        return json.loads(resp.json)

    def internal_kv_get(self, key: bytes) -> bytes:
        req = ray_client_pb2.KVGetRequest(key=key)
        resp = self.server.KVGet(req, metadata=self.metadata)
        return resp.value

    def internal_kv_exists(self, key: bytes) -> bytes:
        req = ray_client_pb2.KVGetRequest(key=key)
        resp = self.server.KVGet(req, metadata=self.metadata)
        return resp.value

    def internal_kv_put(self, key: bytes, value: bytes,
                        overwrite: bool) -> bool:
        req = ray_client_pb2.KVPutRequest(
            key=key, value=value, overwrite=overwrite)
        resp = self.server.KVPut(req, metadata=self.metadata)
        return resp.already_exists

    def internal_kv_del(self, key: bytes) -> None:
        req = ray_client_pb2.KVDelRequest(key=key)
        self.server.KVDel(req, metadata=self.metadata)

    def internal_kv_list(self, prefix: bytes) -> bytes:
        req = ray_client_pb2.KVListRequest(prefix=prefix)
        return self.server.KVList(req, metadata=self.metadata).keys

    def is_initialized(self) -> bool:
        if self.server is not None:
            return self.get_cluster_info(
                ray_client_pb2.ClusterInfoType.IS_INITIALIZED)
        return False

    def ping_server(self) -> bool:
        """Simple health check.

        Piggybacks the IS_INITIALIZED call to check if the server provides
        an actual response.
        """
        if self.server is not None:
            logger.debug("Pinging server.")
            result = self.get_cluster_info(
                ray_client_pb2.ClusterInfoType.IS_INITIALIZED)
            return result is not None
        return False

    def is_connected(self) -> bool:
        return self._conn_state == grpc.ChannelConnectivity.READY

    def _server_init(self, job_config: JobConfig):
        """Initialize the server"""
        try:
            if job_config is None:
                init_req = ray_client_pb2.InitRequest()
                self.data_client.Init(init_req)
                return

            import ray._private.runtime_env as runtime_env
            import tempfile
            with tempfile.TemporaryDirectory() as tmp_dir:
                if runtime_env.PKG_DIR is None:
                    runtime_env.PKG_DIR = tmp_dir
                # Generate the uri for runtime env
                runtime_env.rewrite_working_dir_uri(job_config)
                init_req = ray_client_pb2.InitRequest(
                    job_config=pickle.dumps(job_config))
                self.data_client.Init(init_req)
                runtime_env.upload_runtime_env_package_if_needed(job_config)
                prep_req = ray_client_pb2.PrepRuntimeEnvRequest()
                self.data_client.PrepRuntimeEnv(prep_req)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def _convert_actor(self, actor: "ActorClass") -> str:
        """Register a ClientActorClass for the ActorClass and return a UUID"""
        key = uuid.uuid4().hex
        md = actor.__ray_metadata__
        cls = md.modified_class
        self._converted[key] = ClientActorClass(
            cls,
            options={
                "max_restarts": md.max_restarts,
                "max_task_retries": md.max_task_retries,
                "num_cpus": md.num_cpus,
                "num_gpus": md.num_gpus,
                "memory": md.memory,
                "object_store_memory": md.object_store_memory,
                "resources": md.resources,
                "accelerator_type": md.accelerator_type,
            })
        return key

    def _convert_function(self, func: "RemoteFunction") -> str:
        """Register a ClientRemoteFunc for the ActorClass and return a UUID"""
        key = uuid.uuid4().hex
        f = func._function
        self._converted[key] = ClientRemoteFunc(
            f,
            options={
                "num_cpus": func._num_cpus,
                "num_gpus": func._num_gpus,
                "max_calls": func._max_calls,
                "max_retries": func._max_retries,
                "resources": func._resources,
                "accelerator_type": func._accelerator_type,
                "num_returns": func._num_returns,
                "memory": func._memory
            })
        return key

    def _get_converted(self, key: str) -> "ClientStub":
        """Given a UUID, return the converted object"""
        return self._converted[key]
示例#4
0
文件: worker.py 项目: saeid93/ray
class Worker:
    def __init__(self,
                 conn_str: str = "",
                 secure: bool = False,
                 metadata: List[Tuple[str, str]] = None):
        """Initializes the worker side grpc client.

        Args:
            secure: whether to use SSL secure channel or not.
            metadata: additional metadata passed in the grpc request headers.
        """
        self.metadata = metadata if metadata else []
        self.channel = None
        self._client_id = make_client_id()
        if secure:
            credentials = grpc.ssl_channel_credentials()
            self.channel = grpc.secure_channel(conn_str, credentials)
        else:
            self.channel = grpc.insecure_channel(conn_str)
        self.server = ray_client_pb2_grpc.RayletDriverStub(self.channel)

        self.data_client = DataClient(self.channel, self._client_id,
                                      self.metadata)
        self.reference_count: Dict[bytes, int] = defaultdict(int)

        self.log_client = LogstreamClient(self.channel, self.metadata)
        self.log_client.set_logstream_level(logging.INFO)
        self.closed = False

    def get(self, vals, *, timeout: Optional[float] = None) -> Any:
        to_get = []
        single = False
        if isinstance(vals, list):
            to_get = vals
        elif isinstance(vals, ClientObjectRef):
            to_get = [vals]
            single = True
        else:
            raise Exception("Can't get something that's not a "
                            "list of IDs or just an ID: %s" % type(vals))
        if timeout is None:
            timeout = 0
        out = [self._get(x, timeout) for x in to_get]
        if single:
            out = out[0]
        return out

    def _get(self, ref: ClientObjectRef, timeout: float):
        req = ray_client_pb2.GetRequest(id=ref.id, timeout=timeout)
        try:
            data = self.data_client.GetObject(req)
        except grpc.RpcError as e:
            raise e.details()
        if not data.valid:
            err = cloudpickle.loads(data.error)
            logger.error(err)
            raise err
        return loads_from_server(data.data)

    def put(self, vals):
        to_put = []
        single = False
        if isinstance(vals, list):
            to_put = vals
        else:
            single = True
            to_put.append(vals)

        out = [self._put(x) for x in to_put]
        if single:
            out = out[0]
        return out

    def _put(self, val):
        if isinstance(val, ClientObjectRef):
            raise TypeError(
                "Calling 'put' on an ObjectRef is not allowed "
                "(similarly, returning an ObjectRef from a remote "
                "function is not allowed). If you really want to "
                "do this, you can wrap the ObjectRef in a list and "
                "call 'put' on it (or return it).")
        data = dumps_from_client(val, self._client_id)
        req = ray_client_pb2.PutRequest(data=data)
        resp = self.data_client.PutObject(req)
        return ClientObjectRef(resp.id)

    def wait(
        self,
        object_refs: List[ClientObjectRef],
        *,
        num_returns: int = 1,
        timeout: float = None,
        fetch_local: bool = True
    ) -> Tuple[List[ClientObjectRef], List[ClientObjectRef]]:
        if not isinstance(object_refs, list):
            raise TypeError("wait() expected a list of ClientObjectRef, "
                            f"got {type(object_refs)}")
        for ref in object_refs:
            if not isinstance(ref, ClientObjectRef):
                raise TypeError("wait() expected a list of ClientObjectRef, "
                                f"got list containing {type(ref)}")
        data = {
            "object_ids": [object_ref.id for object_ref in object_refs],
            "num_returns": num_returns,
            "timeout": timeout if timeout else -1,
            "client_id": self._client_id,
        }
        req = ray_client_pb2.WaitRequest(**data)
        resp = self.server.WaitObject(req, metadata=self.metadata)
        if not resp.valid:
            # TODO(ameer): improve error/exceptions messages.
            raise Exception("Client Wait request failed. Reference invalid?")
        client_ready_object_ids = [
            ClientObjectRef(ref) for ref in resp.ready_object_ids
        ]
        client_remaining_object_ids = [
            ClientObjectRef(ref) for ref in resp.remaining_object_ids
        ]

        return (client_ready_object_ids, client_remaining_object_ids)

    def call_remote(self, instance, *args, **kwargs) -> List[bytes]:
        task = instance._prepare_client_task()
        for arg in args:
            pb_arg = convert_to_arg(arg, self._client_id)
            task.args.append(pb_arg)
        for k, v in kwargs.items():
            task.kwargs[k].CopyFrom(convert_to_arg(v, self._client_id))
        return self._call_schedule_for_task(task)

    def _call_schedule_for_task(
            self, task: ray_client_pb2.ClientTask) -> List[bytes]:
        logger.debug("Scheduling %s" % task)
        task.client_id = self._client_id
        try:
            ticket = self.server.Schedule(task, metadata=self.metadata)
        except grpc.RpcError as e:
            raise decode_exception(e.details)
        if not ticket.valid:
            raise cloudpickle.loads(ticket.error)
        return ticket.return_ids

    def call_release(self, id: bytes) -> None:
        if self.closed:
            return
        self.reference_count[id] -= 1
        if self.reference_count[id] == 0:
            self._release_server(id)
            del self.reference_count[id]

    def _release_server(self, id: bytes) -> None:
        if self.data_client is not None:
            logger.debug(f"Releasing {id}")
            self.data_client.ReleaseObject(
                ray_client_pb2.ReleaseRequest(ids=[id]))

    def call_retain(self, id: bytes) -> None:
        logger.debug(f"Retaining {id.hex()}")
        self.reference_count[id] += 1

    def close(self):
        self.log_client.close()
        self.data_client.close()
        if self.channel:
            self.channel.close()
            self.channel = None
        self.server = None
        self.closed = True

    def get_actor(self, name: str) -> ClientActorHandle:
        task = ray_client_pb2.ClientTask()
        task.type = ray_client_pb2.ClientTask.NAMED_ACTOR
        task.name = name
        ids = self._call_schedule_for_task(task)
        assert len(ids) == 1
        return ClientActorHandle(ClientActorRef(ids[0]))

    def terminate_actor(self, actor: ClientActorHandle,
                        no_restart: bool) -> None:
        if not isinstance(actor, ClientActorHandle):
            raise ValueError("ray.kill() only supported for actors. "
                             "Got: {}.".format(type(actor)))
        term_actor = ray_client_pb2.TerminateRequest.ActorTerminate()
        term_actor.id = actor.actor_ref.id
        term_actor.no_restart = no_restart
        try:
            term = ray_client_pb2.TerminateRequest(actor=term_actor)
            term.client_id = self._client_id
            self.server.Terminate(term)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def terminate_task(self, obj: ClientObjectRef, force: bool,
                       recursive: bool) -> None:
        if not isinstance(obj, ClientObjectRef):
            raise TypeError(
                "ray.cancel() only supported for non-actor object refs. "
                f"Got: {type(obj)}.")
        term_object = ray_client_pb2.TerminateRequest.TaskObjectTerminate()
        term_object.id = obj.id
        term_object.force = force
        term_object.recursive = recursive
        try:
            term = ray_client_pb2.TerminateRequest(task_object=term_object)
            term.client_id = self._client_id
            self.server.Terminate(term)
        except grpc.RpcError as e:
            raise decode_exception(e.details())

    def get_cluster_info(self, type: ray_client_pb2.ClusterInfoType.TypeEnum):
        req = ray_client_pb2.ClusterInfoRequest()
        req.type = type
        resp = self.server.ClusterInfo(req, metadata=self.metadata)
        if resp.WhichOneof("response_type") == "resource_table":
            # translate from a proto map to a python dict
            output_dict = {k: v for k, v in resp.resource_table.table.items()}
            return output_dict
        return json.loads(resp.json)

    def is_initialized(self) -> bool:
        if self.server is not None:
            return self.get_cluster_info(
                ray_client_pb2.ClusterInfoType.IS_INITIALIZED)
        return False