示例#1
0
    def test_dbgauss_s1(self):
        r1 = 56.20238
        c1 = 1/r1
        y0 = 25.0
        s1 = Spherical(c=c1)
        p1 = np.array([0., y0, 0.])
        sag1 = r1 - sqrt(r1*r1 - y0*y0)

        # test for p0 ray, (0, 0, 0), (0, 0, 1)
        p0_truth = 1.0, np.array([0., 0., 0.])

        p0s1 = s1.intersect(self.p0, self.dir0, self.eps, self.z_dir)
        assert ((p0s1[0], p0s1[1].all()) ==
                (p0_truth[0], p0_truth[1].all()))
        self.assertEqual(p0s1[0], 1.0)
        npt.assert_allclose(p0s1[1], np.array([0., 0., 0.]),
                            rtol=1e-14, atol=1e-14)

        # test for p1 ray, (0, 1, 0), (0, 0, 1)
        p1_truth = 5.866433424372758, np.array([0., y0, sag1])
        p1s1 = s1.intersect(p1, self.dir0, self.eps, self.z_dir)
        assert p1s1[0] == approx(p1_truth[0], rel=1e-14, abs=1e-14)
        npt.assert_allclose(p1s1[1], p1_truth[1], rtol=1e-14)

        dir_p1s1 = s1.normal(p1s1[1])
        dir_p1s1_truth = -normalize(p1_truth[1] - np.array([0, 0, r1]))
        assert dir_p1s1.all() == dir_p1s1_truth.all()
        npt.assert_allclose(dir_p1s1, dir_p1s1_truth, rtol=1e-14)
示例#2
0
    def test_planar_sphere(self):
        s1 = Spherical(c=0.0)
        p_truth = 1.0, np.array([0., 0., 0.])

        # test for p0 ray, (0, 0, 0), (0, 0, 1)
        p0s1 = s1.intersect(self.p0, self.dir0, self.eps, self.z_dir)
        assert (p0s1[0], p0s1[1].all()) == (p_truth[0], p_truth[1].all())

        # test for p1 ray, (0, 1, 0), (0, 0, 1)
        p1s1 = s1.intersect(self.p1, self.dir0, self.eps, self.z_dir)
        assert ((p1s1[0], p1s1[1].all()) ==
                (p_truth[0], np.array([0., 1., 0.]).all()))
示例#3
0
def create_lens(power=0., bending=0., th=None, sd=1., med=None):
    if med is None:
        med = Glass()
    rndx = med.rindex('d')
    cv1 = power / (2 * (rndx - 1))
    cv2 = -power / (2 * (rndx - 1))
    s1 = Surface(profile=Spherical(c=cv1), max_ap=sd, delta_n=(rndx - 1))
    s2 = Surface(profile=Spherical(c=cv2), max_ap=sd, delta_n=(1 - rndx))
    if th is None:
        th = sd / 5
    g = Gap(t=th, med=med)
    le = Element(s1, s2, g, sd=sd)
    return [[s1, g, None, rndx, 1], [s2, None, None, 1, 1]], [le]
示例#4
0
def create_mirror(c=0.0,
                  r=None,
                  cc=0.0,
                  ec=None,
                  power=None,
                  profile=None,
                  sd=None,
                  **kwargs):
    '''Create a sequence and element for a mirror.

    Args:
        c: vertex curvature
        r: vertex radius of curvature
        cc: conic constant
        ec: 1 + cc
        power:  optical power of the mirror
        sd:  semi-diameter
        profile: Spherical or Conic
    '''
    delta_n = kwargs['delta_n'] if 'delta_n' in kwargs else -2
    if power:
        cv = power / delta_n
    elif r:
        cv = 1.0 / r
    else:
        cv = c

    if ec:
        k = ec - 1.0
    else:
        k = cc

    if profile is Spherical:
        prf = Spherical(c=cv)
    elif profile is Conic:
        prf = Conic(c=cv, cc=k)
    else:
        if k == 0.0:
            prf = Spherical(c=cv)
        else:
            prf = Conic(c=cv, cc=k)

    m = Surface(profile=prf,
                interact_mode='reflect',
                max_ap=sd,
                delta_n=delta_n,
                **kwargs)
    me = Mirror(m, sd=sd)
    return [[m, None, None, 1, -1]], [me]
示例#5
0
    def test_concave_sphere(self):
        r3 = 10
        s3 = Spherical(r=-r3)

        # test for p0 ray, (0, 0, 0), (0, 0, 1)
        p0_truth = 1.0, np.array([0., 0., 0.])

        p0s3_dir = s3.intersect(self.p0, self.dir0, self.eps, self.z_dir)
        p0s3_tnp = s3.intersect_tangent_plane(self.p0, self.dir0,
                                              self.eps, self.z_dir)
        assert ((p0s3_dir[0], p0s3_dir[1].all()) ==
                (p0s3_tnp[0], p0s3_tnp[1].all()))

        p0s3 = p0s3_dir
        assert ((p0s3[0], p0s3[1].all()) == (p0_truth[0], p0_truth[1].all()))

        # test for p1 ray, (0, 1, 0), (0, 0, 1)
        sag3 = r3 - sqrt(r3*r3 - 1.0)
        p1_truth = 1-sag3, np.array([0., 1., -sag3])

        p1s3_tnp = s3.intersect_tangent_plane(self.p1, self.dir0,
                                              self.eps, self.z_dir)
        p1s3_dir = s3.intersect(self.p1, self.dir0, self.eps, self.z_dir)
        assert ((p1s3_dir[0], p1s3_dir[1].all()) ==
                (p1s3_tnp[0], p1s3_tnp[1].all()))

        p1s3 = p1s3_dir
        assert p1s3[0] == approx(p1_truth[0], rel=1e-14, abs=1e-14)
        assert p1s3[1].all() == p1_truth[1].all()

        dir_p1s3 = s3.normal(p1s3[1])
        dir_p1s3_truth = normalize(p1_truth[1] - np.array([0, 0, -r3]))
        assert dir_p1s3.all() == dir_p1s3_truth.all()
示例#6
0
def create_mirror(c=0.0,
                  r=None,
                  cc=0.0,
                  ec=None,
                  power=None,
                  profile=None,
                  sd=None,
                  **kwargs):
    delta_n = kwargs['delta_n'] if 'delta_n' in kwargs else -2
    if power:
        cv = power / delta_n
    elif r:
        cv = 1.0 / r
    else:
        cv = c

    if ec:
        k = ec - 1.0
    else:
        k = cc

    if profile is Spherical:
        prf = Spherical(c=cv)
    elif profile is Conic:
        prf = Conic(c=cv, cc=k)
    else:
        if k == 0.0:
            prf = Spherical(c=cv)
        else:
            prf = Conic(c=cv, cc=k)

    m = Surface(profile=prf,
                interact_mode='reflect',
                max_ap=sd,
                delta_n=delta_n,
                **kwargs)
    me = Mirror(m, sd=sd)
    return [[m, None, None, 1, -1]], [me]
示例#7
0
    def test_convex_sphere(self):
        r2 = 10
        c2 = 1/r2
        s2 = Spherical(c=c2)

        # test for p0 ray, (0, 0, 0), (0, 0, 1)
        p0_truth = 1.0, np.array([0., 0., 0.])

        p0s2_dir = s2.intersect(self.p0, self.dir0, self.eps, self.z_dir)
        p0s2_tnp = s2.intersect_tangent_plane(self.p0, self.dir0,
                                              self.eps, self.z_dir)
        assert ((p0s2_dir[0], p0s2_dir[1].all()) ==
                (p0s2_tnp[0], p0s2_tnp[1].all()))

        p0s2 = p0s2_dir
        assert ((p0s2[0], p0s2[1].all()) == (p0_truth[0], p0_truth[1].all()))

        # A spherical EvenPolynomial will use iteration to find the
        #  intersection. Use this case to further check results
        sa2 = EvenPolynomial(c=c2)
        p0sa2 = sa2.intersect(self.p0, self.dir0, self.eps, self.z_dir)
        assert ((p0sa2[0], p0sa2[1].all()) ==
                (p0_truth[0], p0_truth[1].all()))

        assert (p0s2_dir[0], p0s2_dir[1].all()) == (p0sa2[0], p0sa2[1].all())

        # test for p1 ray, (0, 1, 0), (0, 0, 1)
        sag2 = r2 - sqrt(r2*r2 - 1.0)
        p1_truth = 1+sag2, np.array([0., 1., sag2])

        p1s2_dir = s2.intersect(self.p1, self.dir0, self.eps, self.z_dir)
        p1s2_tnp = s2.intersect_tangent_plane(self.p1, self.dir0,
                                              self.eps, self.z_dir)
        assert ((p1s2_dir[0], p1s2_dir[1].all()) ==
                (p1s2_tnp[0], p1s2_tnp[1].all()))

        p1s2 = p1s2_dir
        assert ((p1s2[0], p1s2[1].all()) ==
                (p1_truth[0], p1_truth[1].all()))

        dir_p1s2 = s2.normal(p1s2[1])
        dir_p1s2_truth = -normalize(p1_truth[1] - np.array([0, 0, r2]))
        assert dir_p1s2.all() == dir_p1s2_truth.all()