示例#1
0
def test_small_sparse_partial_fit():
    for sparse in [csc_matrix, csr_matrix]:
        X_sparse = sparse(Xdigits[:100])
        X = Xdigits[:100].copy()

        rbm1 = BernoulliRBM(n_components=64, learning_rate=0.1,
                            batch_size=10, random_state=9)
        rbm2 = BernoulliRBM(n_components=64, learning_rate=0.1,
                            batch_size=10, random_state=9)

        rbm1.partial_fit(X_sparse)
        rbm2.partial_fit(X)

        assert_almost_equal(rbm1.score_samples(X).mean(),
                            rbm2.score_samples(X).mean(),
                            decimal=0)
示例#2
0
def test_fit():
    X = Xdigits.copy()

    rbm = BernoulliRBM(n_components=64, learning_rate=0.1,
                       batch_size=10, n_iter=7, random_state=9)
    rbm.fit(X)
    print rbm.get_components()
    assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0)

    # in-place tricks shouldn't have modified X
    assert_array_equal(X, Xdigits)
示例#3
0
def test_score_samples():
    """Test score_samples (pseudo-likelihood) method."""
    # Assert that pseudo-likelihood is computed without clipping.
    # See Fabian's blog, http://bit.ly/1iYefRk
    rng = np.random.RandomState(42)
    X = np.vstack([np.zeros(1000), np.ones(1000)])
    rbm1 = BernoulliRBM(n_components=10, batch_size=2,
                        n_iter=10, random_state=rng)
    rbm1.fit(X)
    assert_true((rbm1.score_samples(X) < -300).all())

    # Sparse vs. dense should not affect the output. Also test sparse input
    # validation.
    rbm1.random_state = 42
    d_score = rbm1.score_samples(X)
    rbm1.random_state = 42
    s_score = rbm1.score_samples(lil_matrix(X))
    assert_almost_equal(d_score, s_score)

    # Test numerical stability (#2785): would previously generate infinities
    # and crash with an exception.
    with np.errstate(under='ignore'):
        rbm1.score_samples(np.arange(1000) * 100)
示例#4
0
def test_partial_fit():
    X = Xdigits.copy()
    n = 7
    rbm = BernoulliRBM(n_components=64, learning_rate=0.1,
                       batch_size=10, random_state=9)
    n_samples = X.shape[0]
    n_batches = int(np.ceil(float(n_samples) / rbm.batch_size))
    batch_slices = np.array_split(X, n_batches)

    for i in range(n):
        for batch in batch_slices:
            rbm.partial_fit(batch)

    assert_almost_equal(rbm.score_samples(X).mean(), -21., decimal=0)
    assert_array_equal(X, Xdigits)