def solve_adjoint_supremizer(self, solution):
     (cache_key, cache_file) = self._supremizer_cache_key_and_file()
     if "RAM" in self.cache_config and cache_key in self._adjoint_supremizer_cache:
         log(PROGRESS, "Loading adjoint supremizer from cache")
         assign(self._adjoint_supremizer,
                self._adjoint_supremizer_cache[cache_key])
     elif "Disk" in self.cache_config and self.import_supremizer(
             self.folder["cache"],
             cache_file,
             self._adjoint_supremizer,
             component="r"):
         log(PROGRESS, "Loading adjoint supremizer from file")
         if "RAM" in self.cache_config:
             self._adjoint_supremizer_cache[cache_key] = copy(
                 self._adjoint_supremizer)
     else:  # No precomputed adjoint supremizer available. Truth adjoint supremizer solve is performed.
         log(PROGRESS, "Solving adjoint supremizer problem")
         self._solve_adjoint_supremizer(solution)
         if "RAM" in self.cache_config:
             self._adjoint_supremizer_cache[cache_key] = copy(
                 self._adjoint_supremizer)
         self.export_supremizer(
             self.folder["cache"],
             cache_file,
             self._adjoint_supremizer,
             component="r"
         )  # Note that we export to file regardless of config options, because they may change across different runs
     return self._adjoint_supremizer
 def solve(self, N=None, **kwargs):
     """
     Perform an online solve. self.N will be used as matrix dimension if the default value is provided for N.
     
     :param N : Dimension of the reduced problem
     :type N : integer
     :return: reduced solution
     """
     N, kwargs = self._online_size_from_kwargs(N, **kwargs)
     N += self.N_bc
     self._latest_solve_kwargs = kwargs
     self._solution = OnlineFunction(N)
     if N == 0:  # trivial case
         return self._solution
     try:
         assign(self._solution, self._solution_cache[
             self.mu, N,
             kwargs])  # **kwargs is not supported by __getitem__
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         self._solve(N, **kwargs)
         delattr(self, "_is_solving")
         self._solution_cache[self.mu, N, kwargs] = copy(self._solution)
     return self._solution
示例#3
0
 def patched_truth_compute_output(self_):
     other_truth_problem.compute_output()
     assign(self.truth_problem._output,
            other_truth_problem._output)
     assign(self.truth_problem._output_over_time,
            other_truth_problem._output_over_time)
     return self.truth_problem._output_over_time
示例#4
0
 def get_residual_norm_squared(self):
     residual_norm_squared_over_time = TimeSeries(self._solution_over_time)
     assert len(self._solution_over_time) == len(self._solution_dot_over_time)
     for (k, t) in enumerate(self._solution_over_time.stored_times()):
         if not isclose(t, self.t0, self.dt/2.):
             # Set current time
             self.set_time(t)
             # Set current solution and solution_dot
             assign(self._solution, self._solution_over_time[k])
             assign(self._solution_dot, self._solution_dot_over_time[k])
             # Compute the numerator of the error bound at the current time, first
             # by computing residual of elliptic part
             elliptic_residual_norm_squared = ParabolicCoerciveRBReducedProblem_Base.get_residual_norm_squared(self)
             # ... and then adding terms related to time derivative
             N = self._solution.N
             theta_m = self.compute_theta("m")
             theta_a = self.compute_theta("a")
             theta_f = self.compute_theta("f")
             residual_norm_squared_over_time.append(
                   elliptic_residual_norm_squared
                 + 2.0*(transpose(self._solution_dot)*sum(product(theta_m, self.error_estimation_operator["m", "f"][:N], theta_f)))
                 + 2.0*(transpose(self._solution_dot)*sum(product(theta_m, self.error_estimation_operator["m", "a"][:N, :N], theta_a))*self._solution)
                 + transpose(self._solution_dot)*sum(product(theta_m, self.error_estimation_operator["m", "m"][:N, :N], theta_m))*self._solution_dot
             )
         else:
             # Error estimator on initial condition does not use the residual
             residual_norm_squared_over_time.append(0.)
     return residual_norm_squared_over_time
示例#5
0
 def _solve(self):
     if self.multiply_by_theta:
         assert isinstance(self.term, str) # method untested otherwise
         O = sum(product(self.truth_problem.compute_theta(self.term), self.operator))  # noqa
     else:
         assert isinstance(self.term, tuple) # method untested otherwise
         assert len(self.operator) == 1
         O = self.operator[0]  # noqa
     assert len(self.inner_product) == 1
     inner_product = self.inner_product[0]
     
     if self.truth_problem.dirichlet_bc is not None:
         dirichlet_bcs_sum = sum(product((0., )*len(self.truth_problem.dirichlet_bc), self.truth_problem.dirichlet_bc))
         eigensolver = EigenSolver(self.truth_problem.V, O, inner_product, dirichlet_bcs_sum)
     else:
         eigensolver = EigenSolver(self.truth_problem.V, O, inner_product)
     eigensolver_parameters = dict()
     eigensolver_parameters["problem_type"] = "gen_hermitian"
     assert self.spectrum is "largest" or self.spectrum is "smallest"
     eigensolver_parameters["spectrum"] = self.spectrum + " real"
     if self.eigensolver_parameters is not None:
         if "spectral_transform" in self.eigensolver_parameters and self.eigensolver_parameters["spectral_transform"] == "shift-and-invert":
             eigensolver_parameters["spectrum"] = "target real"
         eigensolver_parameters.update(self.eigensolver_parameters)
     eigensolver.set_parameters(eigensolver_parameters)
     eigensolver.solve(1)
     
     r, c = eigensolver.get_eigenvalue(0) # real and complex part of the eigenvalue
     r_vector, c_vector = eigensolver.get_eigenvector(0) # real and complex part of the eigenvectors
     
     assert isclose(c, 0), "The required eigenvalue is not real"
     
     self._eigenvalue = r
     assign(self._eigenvector, r_vector)
 def solve(self):
     problem = self.problem
     solver = TimeStepping(self, problem._solution, problem._solution_dot)
     solver.set_parameters(problem._time_stepping_parameters)
     (_, problem._solution_over_time, problem._solution_dot_over_time) = solver.solve()
     assign(problem._solution, problem._solution_over_time[-1])
     assign(problem._solution_dot, problem._solution_dot_over_time[-1])
示例#7
0
 def solve(self, **kwargs):
     """
     Perform a truth solve in case no precomputed solution is imported.
     """
     (cache_key,
      cache_file) = self._cache_key_and_file_from_kwargs(**kwargs)
     if "RAM" in self.cache_config and cache_key in self._solution_cache:
         log(PROGRESS, "Loading truth solution from cache")
         assign(self._solution, self._solution_cache[cache_key])
     elif "Disk" in self.cache_config and self.import_solution(
             self.folder["cache"], cache_file):
         log(PROGRESS, "Loading truth solution from file")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
     else:  # No precomputed solution available. Truth solve is performed.
         log(PROGRESS, "Solving truth problem")
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         self._solve(**kwargs)
         delattr(self, "_is_solving")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
         self.export_solution(
             self.folder["cache"], cache_file
         )  # Note that we export to file regardless of config options, because they may change across different runs
     return self._solution
    def _solve(self):
        assert self.operator["stability_factor_left_hand_matrix"] is not None
        if self.expansion_index is None:
            A = sum(product(
                self.truth_problem.compute_theta("stability_factor_left_hand_matrix"),
                self.operator["stability_factor_left_hand_matrix"]))
        else:
            assert len(self.operator["stability_factor_left_hand_matrix"]) == 1
            A = self.operator["stability_factor_left_hand_matrix"][0]
        assert self.operator["stability_factor_right_hand_matrix"] is not None
        assert len(self.operator["stability_factor_right_hand_matrix"]) == 1
        B = self.operator["stability_factor_right_hand_matrix"][0]

        if self.dirichlet_bc is not None:
            dirichlet_bcs_sum = sum(product((0., ) * len(self.dirichlet_bc), self.dirichlet_bc))
            eigensolver = EigenSolver(self.truth_problem.stability_factor_V, A, B, dirichlet_bcs_sum)
        else:
            eigensolver = EigenSolver(self.truth_problem.stability_factor_V, A, B)
        eigensolver_parameters = dict()
        assert self.spectrum == "largest" or self.spectrum == "smallest"
        eigensolver_parameters["spectrum"] = self.spectrum + " real"
        eigensolver_parameters.update(self.eigensolver_parameters)
        eigensolver.set_parameters(eigensolver_parameters)
        eigensolver.solve(1)

        r, c = eigensolver.get_eigenvalue(0)  # real and complex part of the eigenvalue
        r_vector, c_vector = eigensolver.get_eigenvector(0)  # real and complex part of the eigenvectors

        assert isclose(c, 0.), "The required eigenvalue is not real"

        self._eigenvalue = r
        assign(self._eigenvector, r_vector)
示例#9
0
 def solve_supremizer(self, solution):
     kwargs = self._latest_solve_kwargs
     try:
         assign(self._supremizer, self._supremizer_cache[self.mu, kwargs]) # **kwargs is not supported by __getitem__
     except KeyError:
         self._solve_supremizer(solution)
         self._supremizer_cache[self.mu, kwargs] = copy(self._supremizer)
     return self._supremizer
示例#10
0
 def export_error(self, folder=None, filename=None, component=None, suffix=None, **kwargs):
     self.truth_problem.solve(**kwargs)
     assert len(self.truth_problem._solution_over_time) == len(self._solution_over_time)
     for (k, t) in enumerate(self.truth_problem._solution_over_time.stored_times()):
         self.set_time(t)
         assign(self._solution, self._solution_over_time[k])
         assign(self.truth_problem._solution, self.truth_problem._solution_over_time[k])
         assert suffix is None
         self.truth_problem.export_solution(folder, filename, self.truth_problem._solution - self.basis_functions[:self._solution.N]*self._solution, component=component, suffix=k)
 def solve(self):
     cache_key = self._cache_key()
     try:
         self._eigenvalue = self._eigenvalue_cache[cache_key]
         assign(self._eigenvector, self._eigenvector_cache[cache_key])
     except KeyError:
         self._solve()
         self._eigenvalue_cache[cache_key] = self._eigenvalue
         self._eigenvector_cache[cache_key] = copy(self._eigenvector)
     return (self._eigenvalue, self._eigenvector)
示例#12
0
 def _compute_relative_error(self, absolute_error_over_time, **kwargs):
     relative_error_over_time = TimeSeries(self._solution_over_time)
     assert len(self._solution_over_time) == len(absolute_error_over_time)
     for (k, t) in enumerate(self.truth_problem._solution_over_time.stored_times()):
         self.set_time(t)
         assign(self.truth_problem._solution, self.truth_problem._solution_over_time[k])
         absolute_error = self._convert_error_at_time(k, absolute_error_over_time)
         relative_error = ParametrizedReducedDifferentialProblem_DerivedClass._compute_relative_error(self, absolute_error, **kwargs)
         relative_error_over_time.append(relative_error)
     relative_error_over_time = self._convert_error_over_time(relative_error_over_time)
     return relative_error_over_time
示例#13
0
 def _compute_error(self, **kwargs):
     error_over_time = list()
     for (k, (truth_solution, reduced_solution)) in enumerate(
             zip(self.truth_problem._solution_over_time,
                 self._solution_over_time)):
         self.set_time(k * self.dt)
         assign(self._solution, reduced_solution)
         assign(self.truth_problem._solution, truth_solution)
         error = ParametrizedReducedDifferentialProblem_DerivedClass._compute_error(
             self, **kwargs)
         error_over_time.append(error)
     error_over_time = self._convert_error_over_time(error_over_time)
     return error_over_time
示例#14
0
 def solve(self, N=None, **kwargs):
     N, kwargs = self.reduced_problem._online_size_from_kwargs(N, **kwargs)
     N += self.reduced_problem.N_bc
     self._eigenvector = OnlineFunction(N)
     cache_key = self._cache_key(**kwargs)
     try:
         self._eigenvalue = self._eigenvalue_cache[cache_key]
         assign(self._eigenvector, self._eigenvector_cache[cache_key])
     except KeyError:
         self._solve(N, **kwargs)
         self._eigenvalue_cache[cache_key] = self._eigenvalue
         self._eigenvector_cache[cache_key] = copy(self._eigenvector)
     return (self._eigenvalue, self._eigenvector)
示例#15
0
 def solve(self, **kwargs):
     """
     Perform a truth solve in case no precomputed solution is imported.
     """
     self._latest_solve_kwargs = kwargs
     try:
         assign(self._solution, self._solution_cache[self.mu, kwargs])  # **kwargs is not supported by __getitem__
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         self._solve(**kwargs)  # will also add to cache
         delattr(self, "_is_solving")
     return self._solution
 def patched_truth_solve(self_, **kwargs_):
     other_truth_problem.solve(**kwargs_)
     assign(self.truth_problem._solution, other_truth_problem._solution)
     assign(self.truth_problem._solution_dot, other_truth_problem._solution_dot)
     assign(self.truth_problem._solution_over_time, other_truth_problem._solution_over_time)
     assign(self.truth_problem._solution_dot_over_time, other_truth_problem._solution_dot_over_time)
     return self.truth_problem._solution_over_time
示例#17
0
 def solve(self, N=None, **kwargs):
     N, kwargs = self._online_size_from_kwargs(N, **kwargs)
     N += self.N_bc
     self._solution = OnlineFunction(N)
     self._solution_dot = OnlineFunction(N)
     cache_key = self._cache_key_from_N_and_kwargs(N, **kwargs)
     assert ((cache_key in self._solution_cache) ==
             (cache_key in self._solution_dot_cache) ==
             (cache_key in self._solution_over_time_cache) ==
             (cache_key in self._solution_dot_over_time_cache))
     if "RAM" in self.cache_config and cache_key in self._solution_cache:
         log(PROGRESS, "Loading reduced solution from cache")
         assign(self._solution, self._solution_cache[cache_key])
         assign(self._solution_dot, self._solution_dot_cache[cache_key])
         assign(self._solution_over_time,
                self._solution_over_time_cache[cache_key])
         assign(self._solution_dot_over_time,
                self._solution_dot_over_time_cache[cache_key])
     else:
         log(PROGRESS, "Solving reduced problem")
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         self._solve(N, **kwargs)
         delattr(self, "_is_solving")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
             self._solution_dot_cache[cache_key] = copy(
                 self._solution_dot)
             self._solution_over_time_cache[cache_key] = copy(
                 self._solution_over_time)
             self._solution_dot_over_time_cache[cache_key] = copy(
                 self._solution_dot_over_time)
     return self._solution_over_time
示例#18
0
 def _compute_relative_error(self, absolute_error_over_time, **kwargs):
     relative_error_over_time = list()
     for (k, truth_solution) in enumerate(
             self.truth_problem._solution_over_time):
         self.set_time(k * self.dt)
         assign(self.truth_problem._solution, truth_solution)
         absolute_error = self._convert_error_at_time(
             k, absolute_error_over_time)
         relative_error = ParametrizedReducedDifferentialProblem_DerivedClass._compute_relative_error(
             self, absolute_error, **kwargs)
         relative_error_over_time.append(relative_error)
     relative_error_over_time = self._convert_error_over_time(
         relative_error_over_time)
     return relative_error_over_time
 def solve(self, N=None, **kwargs):
     N, kwargs = self._online_size_from_kwargs(N, **kwargs)
     N += self.N_bc
     self._latest_solve_kwargs = kwargs
     self._solution = OnlineFunction(N)
     self._solution_over_time.clear()
     self._solution_dot = OnlineFunction(N)
     self._solution_dot_over_time.clear()
     if N == 0:  # trivial case
         self._solution_over_time.extend([
             self._solution
             for _ in self._solution_over_time.expected_times()
         ])
         self._solution_dot_over_time.extend([
             self._solution_dot
             for _ in self._solution_dot_over_time.expected_times()
         ])
         return self._solution_over_time
     try:
         assign(self._solution_over_time,
                self._solution_over_time_cache[self.mu, N, kwargs])
         # **kwargs is not supported by __getitem__
         assign(self._solution_dot_over_time,
                self._solution_dot_over_time_cache[self.mu, N, kwargs])
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         self._solve(N, **kwargs)
         delattr(self, "_is_solving")
     assign(self._solution, self._solution_over_time[-1])
     assign(self._solution_dot, self._solution_dot_over_time[-1])
     return self._solution_over_time
示例#20
0
 def solve_supremizer(self, solution):
     N_us = OnlineSizeDict(solution.N) # create a copy
     del N_us["p"]
     cache_key = self._supremizer_cache_key_from_N_and_kwargs(N_us)
     self._supremizer = OnlineFunction(N_us)
     if "RAM" in self.cache_config and cache_key in self._supremizer_cache:
         log(PROGRESS, "Loading reduced supremizer from cache")
         assign(self._supremizer, self._supremizer_cache[cache_key])
     else:
         log(PROGRESS, "Solving supremizer reduced problem")
         self._solve_supremizer(solution)
         if "RAM" in self.cache_config:
             self._supremizer_cache[cache_key] = copy(self._supremizer)
     return self._supremizer
示例#21
0
 def solve_supremizer(self, solution):
     N_us = OnlineSizeDict(solution.N)  # create a copy
     del N_us["p"]
     kwargs = self._latest_solve_kwargs
     self._supremizer = OnlineFunction(N_us)
     try:
         assign(self._supremizer, self._supremizer_cache[
             self.mu, N_us,
             kwargs])  # **kwargs is not supported by __getitem__
     except KeyError:
         self._solve_supremizer(solution)
         self._supremizer_cache[self.mu, N_us,
                                kwargs] = copy(self._supremizer)
     return self._supremizer
示例#22
0
 def compute_output(self):
     N = self._solution.N
     kwargs = self._latest_solve_kwargs
     try:
         assign(self._output_over_time, self._output_over_time_cache[self.mu, N, kwargs]) # **kwargs is not supported by __getitem__
     except KeyError:
         try:
             self._compute_output(N)
         except ValueError: # raised by compute_theta if output computation is optional
             self._output_over_time.clear()
             self._output_over_time.extend([NotImplemented]*len(self._solution_over_time))
             self._output = NotImplemented
         self._output_over_time_cache[self.mu, N, kwargs] = self._output_over_time
     else:
         self._output = self._output_over_time[-1]
     return self._output_over_time
 def _solve(self, N, **kwargs):
     assert self.operator["stability_factor_left_hand_matrix"] is not None
     A = sum(product(self.reduced_problem.compute_theta("stability_factor_left_hand_matrix"), self.operator["stability_factor_left_hand_matrix"][:N, :N]))
     assert self.operator["stability_factor_right_hand_matrix"] is not None
     assert len(self.operator["stability_factor_right_hand_matrix"]) == 1
     B = self.operator["stability_factor_right_hand_matrix"][0][:N, :N]
     
     eigensolver = OnlineEigenSolver(self.reduced_problem.stability_factor_basis_functions, A, B)
     eigensolver_parameters = dict()
     assert self.spectrum == "largest" or self.spectrum == "smallest"
     eigensolver_parameters["spectrum"] = self.spectrum + " real"
     eigensolver_parameters.update(self.eigensolver_parameters)
     eigensolver.set_parameters(eigensolver_parameters)
     eigensolver.solve(1)
     
     r, c = eigensolver.get_eigenvalue(0) # real and complex part of the eigenvalue
     r_vector, c_vector = eigensolver.get_eigenvector(0) # real and complex part of the eigenvectors
     
     assert isclose(c, 0.), "The required eigenvalue is not real"
     
     self._eigenvalue = r
     assign(self._eigenvector, r_vector)
 def solve(self):
     (cache_key, cache_file) = self._cache_key_and_file()
     assert (
         (cache_key in self._eigenvalue_cache)
             ==
         (cache_key in self._eigenvector_cache)
     )
     if "RAM" in self.cache_config and cache_key in self._eigenvalue_cache:
         log(PROGRESS, "Loading coercivity constant from cache")
         self._eigenvalue = self._eigenvalue_cache[cache_key]
         assign(self._eigenvector, self._eigenvector_cache[cache_key])
     elif "Disk" in self.cache_config and self.import_solution(self.folder["cache"], cache_file):
         log(PROGRESS, "Loading coercivity constant from file")
         if "RAM" in self.cache_config:
             self._eigenvalue_cache[cache_key] = self._eigenvalue
             self._eigenvector_cache[cache_key] = copy(self._eigenvector)
     else: # No precomputed solution available. Truth solve is performed.
         log(PROGRESS, "Solving coercivity constant eigenproblem")
         self._solve()
         if "RAM" in self.cache_config:
             self._eigenvalue_cache[cache_key] = self._eigenvalue
             self._eigenvector_cache[cache_key] = copy(self._eigenvector)
         self.export_solution(self.folder["cache"], cache_file) # Note that we export to file regardless of config options, because they may change across different runs
     return (self._eigenvalue, self._eigenvector)
示例#25
0
 def solve(self, N=None, **kwargs):
     """
     Perform an online solve. self.N will be used as matrix dimension if the default value is provided for N.
     
     :param N : Dimension of the reduced problem
     :type N : integer
     :return: reduced solution
     """
     N, kwargs = self._online_size_from_kwargs(N, **kwargs)
     N += self.N_bc
     cache_key = self._cache_key_from_N_and_kwargs(N, **kwargs)
     self._solution = OnlineFunction(N)
     if "RAM" in self.cache_config and cache_key in self._solution_cache:
         log(PROGRESS, "Loading reduced solution from cache")
         assign(self._solution, self._solution_cache[cache_key])
     else:
         log(PROGRESS, "Solving reduced problem")
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         self._solve(N, **kwargs)
         delattr(self, "_is_solving")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
     return self._solution
 def solve(self, N=None, **kwargs):
     N, kwargs = self._online_size_from_kwargs(N, **kwargs)
     N += self.N_bc
     self._latest_solve_kwargs = kwargs
     self._solution = OnlineFunction(N)
     self._solution_dot = OnlineFunction(N)
     if N == 0:  # trivial case
         time_interval = linspace(self.t0, self.T,
                                  (self.T - self.t0) / self.dt)
         self._solution_over_time = [
             self._solution for _ in time_interval
         ]
         self._solution_dot_over_time = [
             self._solution_dot for _ in time_interval
         ]
         return self._solution_over_time
     try:
         assign(self._solution_over_time,
                self._solution_over_time_cache[
                    self.mu, N,
                    kwargs])  # **kwargs is not supported by __getitem__
         assign(self._solution_dot_over_time,
                self._solution_dot_over_time_cache[self.mu, N, kwargs])
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         self._solve(N, **kwargs)
         delattr(self, "_is_solving")
         self._solution_over_time_cache[self.mu, N, kwargs] = copy(
             self._solution_over_time)
         self._solution_dot_over_time_cache[self.mu, N, kwargs] = copy(
             self._solution_dot_over_time)
     else:
         assign(self._solution, self._solution_over_time[-1])
         assign(self._solution_dot, self._solution_dot_over_time[-1])
     return self._solution_over_time
示例#27
0
文件: assign.py 项目: ljnpu/RBniCS
def _assign(object_to: TimeSeries, object_from: TimeSeries):
    if object_from is not object_to:
        from rbnics.backends import assign
        assign(object_to._list, object_from._list)
示例#28
0
 def solve(self, **kwargs):
     (cache_key, cache_file) = self._cache_key_and_file_from_kwargs(**kwargs)
     assert (
         (cache_key in self._solution_cache)
             ==
         (cache_key in self._solution_dot_cache)
             ==
         (cache_key in self._solution_over_time_cache)
             ==
         (cache_key in self._solution_dot_over_time_cache)
     )
     if "RAM" in self.cache_config and cache_key in self._solution_cache:
         log(PROGRESS, "Loading truth solution from cache")
         assign(self._solution, self._solution_cache[cache_key])
         assign(self._solution_dot, self._solution_dot_cache[cache_key])
         assign(self._solution_over_time, self._solution_over_time_cache[cache_key])
         assign(self._solution_dot_over_time, self._solution_dot_over_time_cache[cache_key])
     elif "Disk" in self.cache_config and (
         self.import_solution(self.folder["cache"], cache_file + "_solution", self._solution_over_time)
             and
         self.import_solution(self.folder["cache"], cache_file + "_solution_dot", self._solution_dot_over_time)
     ):
         log(PROGRESS, "Loading truth solution from file")
         assign(self._solution, self._solution_over_time[-1])
         assign(self._solution_dot, self._solution_dot_over_time[-1])
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
             self._solution_dot_cache[cache_key] = copy(self._solution_dot)
             self._solution_over_time_cache[cache_key] = copy(self._solution_over_time)
             self._solution_dot_over_time_cache[cache_key] = copy(self._solution_dot_over_time)
     else:
         log(PROGRESS, "Solving truth problem")
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         assign(self._solution_dot, Function(self.V))
         self._solve(**kwargs)
         delattr(self, "_is_solving")
         if "RAM" in self.cache_config:
             self._solution_cache[cache_key] = copy(self._solution)
             self._solution_dot_cache[cache_key] = copy(self._solution_dot)
             self._solution_over_time_cache[cache_key] = copy(self._solution_over_time)
             self._solution_dot_over_time_cache[cache_key] = copy(self._solution_dot_over_time)
         # Note that we export to file regardless of config options, because they may change across different runs
         self.export_solution(self.folder["cache"], cache_file + "_solution", self._solution_over_time)
         self.export_solution(self.folder["cache"], cache_file + "_solution_dot", self._solution_dot_over_time)
     return self._solution_over_time
示例#29
0
 def solve(self, **kwargs):
     self._latest_solve_kwargs = kwargs
     try:
         assign(self._solution_over_time,
                self._solution_over_time_cache[
                    self.mu,
                    kwargs])  # **kwargs is not supported by __getitem__
         assign(self._solution_dot_over_time,
                self._solution_dot_over_time_cache[self.mu, kwargs])
     except KeyError:
         assert not hasattr(self, "_is_solving")
         self._is_solving = True
         assign(self._solution, Function(self.V))
         assign(self._solution_dot, Function(self.V))
         self._solve(**kwargs)
         delattr(self, "_is_solving")
         self._solution_over_time_cache[self.mu, kwargs] = copy(
             self._solution_over_time)
         self._solution_dot_over_time_cache[self.mu, kwargs] = copy(
             self._solution_dot_over_time)
     else:
         assign(self._solution, self._solution_over_time[-1])
         assign(self._solution_dot, self._solution_dot_over_time[-1])
     return self._solution_over_time
 def patched_truth_solve(self_, **kwargs_):
     other_truth_problem.solve(**kwargs_)
     assign(self.truth_problem._solution,
            other_truth_problem._solution)
     return self.truth_problem._solution