def initialize_training_set(self, ntrain, enable_import=True, sampling=None, **kwargs): import_successful = ReductionMethod.initialize_training_set(self, self.EIM_approximation.mu_range, ntrain, enable_import, sampling, **kwargs) # Since exact evaluation is required, we cannot use a distributed training set self.training_set.distributed_max = False # Also initialize the map from parameter values to snapshots container index self._training_set_parameters_to_snapshots_container_index = dict((mu, mu_index) for (mu_index, mu) in enumerate(self.training_set)) return import_successful
def initialize_training_set(self, ntrain, enable_import=True, sampling=None, **kwargs): return ReductionMethod.initialize_training_set( self, self.truth_problem.mu_range, ntrain, enable_import, sampling, **kwargs)
def initialize_training_set(self, ntrain, enable_import=True, sampling=None, **kwargs): assert enable_import import_successful = ReductionMethod.initialize_training_set( self, self.SCM_approximation.mu_range, ntrain, enable_import, sampling, **kwargs) self.SCM_approximation.training_set = self.training_set return import_successful