示例#1
0
def construct_model(model_path, device, nframes):
    from rbpn import Net as RBPN
    model = RBPN(num_channels=3,
                 base_filter=256,
                 feat=64,
                 num_stages=3,
                 n_resblock=5,
                 nFrames=nframes,
                 scale_factor=4)
    ckpt = torch.load(model_path, map_location='cuda:0')
    new_ckpt = {}
    for key in ckpt:
        if key.startswith('module'):
            new_key = key[7:]
        else:
            new_key = key
        new_ckpt[new_key] = ckpt[key]
    model = model.to(device)
    model.load_state_dict(new_ckpt)
    model.eval()
    return model
def main():
    """ Lets begin the training process! """

    args = parser.parse_args()

    # Initialize Logger
    logger.initLogger(args.debug)

    # Load dataset
    logger.info('==> Loading datasets')
    # print(args.file_list)
    # sys.exit()

    train_set = get_training_set(args.data_dir, args.nFrames,
                                 args.upscale_factor, args.data_augmentation,
                                 args.file_list, args.other_dataset,
                                 args.patch_size, args.future_frame)
    training_data_loader = DataLoader(dataset=train_set,
                                      num_workers=args.threads,
                                      batch_size=args.batchSize,
                                      shuffle=True)

    # Use generator as RBPN
    netG = RBPN(num_channels=3,
                base_filter=256,
                feat=64,
                num_stages=3,
                n_resblock=5,
                nFrames=args.nFrames,
                scale_factor=args.upscale_factor)
    logger.info('# of Generator parameters: %s',
                sum(param.numel() for param in netG.parameters()))

    # Use DataParallel?
    if args.useDataParallel:
        gpus_list = range(args.gpus)
        netG = torch.nn.DataParallel(netG, device_ids=gpus_list)

    # Use discriminator from SRGAN
    netD = Discriminator()
    logger.info('# of Discriminator parameters: %s',
                sum(param.numel() for param in netD.parameters()))

    # Generator loss
    generatorCriterion = nn.L1Loss() if not args.APITLoss else GeneratorLoss()

    # Specify device
    device = torch.device(
        "cuda:0" if torch.cuda.is_available() and args.gpu_mode else "cpu")

    if args.gpu_mode and torch.cuda.is_available():
        utils.printCUDAStats()

        netG.cuda()
        netD.cuda()

        netG.to(device)
        netD.to(device)

        generatorCriterion.cuda()

    # Use Adam optimizer
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lr,
                            betas=(0.9, 0.999),
                            eps=1e-8)
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lr,
                            betas=(0.9, 0.999),
                            eps=1e-8)

    if args.APITLoss:
        logger.info(
            "Generator Loss: Adversarial Loss + Perception Loss + Image Loss + TV Loss"
        )
    else:
        logger.info("Generator Loss: L1 Loss")

    # print iSeeBetter architecture
    utils.printNetworkArch(netG, netD)

    if args.pretrained:
        modelPath = os.path.join(args.save_folder + args.pretrained_sr)
        utils.loadPreTrainedModel(gpuMode=args.gpu_mode,
                                  model=netG,
                                  modelPath=modelPath)

    # sys.exit()
    for epoch in range(args.start_epoch, args.nEpochs + 1):
        runningResults = trainModel(epoch, training_data_loader, netG, netD,
                                    optimizerD, optimizerG, generatorCriterion,
                                    device, args)

        if (epoch + 1) % (args.snapshots) == 0:
            saveModelParams(epoch, runningResults, netG, netD)
示例#3
0
                                  shuffle=True,
                                  num_workers=args.workers,
                                  pin_memory=True)

    device = torch.device("cuda:0")

    print("constructing model ....")
    model = RBPN(num_channels=3,
                 base_filter=256,
                 feat=64,
                 num_stages=3,
                 n_resblock=5,
                 nFrames=args.nframes,
                 scale_factor=4)

    model = nn.DataParallel(model.to(device), gpuids)

    if args.resume:
        ckpt = torch.load(args.model_path)
        new_ckpt = {}
        for key in ckpt:
            if not key.startswith('module'):
                new_key = 'module.' + key
            else:
                new_key = key
            new_ckpt[new_key] = ckpt[key]
        model.load_state_dict(new_ckpt, strict=False)
    print("model constructed")

    #     for key, value in model.named_parameters():
    #         if not ('pre_deblur' in key):