示例#1
0
文件: touNet.py 项目: fhlt/TouNet-VSR
 def __init__(self, num_channels, base_filter, feat, num_stages, n_resblock,
              nFrames, scale_factor):
     super(TouNet, self).__init__()
     self.forward_rbpn = RBPN(num_channels,
                              base_filter,
                              feat,
                              num_stages=3,
                              n_resblock=5,
                              nFrames=nFrames,
                              scale_factor=scale_factor)
     self.backward_rbpn = RBPN(num_channels,
                               base_filter,
                               feat,
                               num_stages=3,
                               n_resblock=5,
                               nFrames=nFrames,
                               scale_factor=scale_factor)
     # fuse results
     self.output = ConvBlock(num_channels * 2,
                             output_size=num_channels,
                             kernel_size=3,
                             stride=1,
                             padding=1,
                             bias=True,
                             activation=None,
                             norm=None)
示例#2
0
def construct_model(model_path, device, nframes):
    from rbpn import Net as RBPN
    model = RBPN(num_channels=3,
                 base_filter=256,
                 feat=64,
                 num_stages=3,
                 n_resblock=5,
                 nFrames=nframes,
                 scale_factor=4)
    ckpt = torch.load(model_path, map_location='cuda:0')
    new_ckpt = {}
    for key in ckpt:
        if key.startswith('module'):
            new_key = key[7:]
        else:
            new_key = key
        new_ckpt[new_key] = ckpt[key]
    model = model.to(device)
    model.load_state_dict(new_ckpt)
    model.eval()
    return model
示例#3
0
                             opt.data_augmentation, opt.file_list,
                             opt.other_dataset, opt.patch_size,
                             opt.future_frame)
#test_set = get_eval_set(opt.test_dir, opt.nFrames, opt.upscale_factor, opt.data_augmentation)
training_data_loader = DataLoader(dataset=train_set,
                                  num_workers=opt.threads,
                                  batch_size=opt.batchSize,
                                  shuffle=True)
#testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=False)

print('===> Building model ', opt.model_type)
if opt.model_type == 'RBPN':
    model = RBPN(num_channels=3,
                 base_filter=256,
                 feat=64,
                 num_stages=3,
                 n_resblock=5,
                 nFrames=opt.nFrames,
                 scale_factor=opt.upscale_factor)

model = torch.nn.DataParallel(model, device_ids=gpus_list)
criterion = nn.L1Loss()

print('---------- Networks architecture -------------')
print_network(model)
print('----------------------------------------------')

if opt.pretrained:
    model_name = os.path.join(opt.save_folder + opt.pretrained_sr)
    if os.path.exists(model_name):
        #model= torch.load(model_name, map_location=lambda storage, loc: storage)
示例#4
0
 def __init__(self, base_filter, feat, num_stages, n_resblock, scale_factor, pretrained=True, freeze=False):
     super(Net, self).__init__()    
     
     if scale_factor == 2:
     	kernel = 6
     	stride = 2
     	padding = 2
     elif scale_factor == 4:
     	kernel = 8
     	stride = 4
     	padding = 2
     elif scale_factor == 8:
     	kernel = 12
     	stride = 8
     	padding = 2
     
     #Initial Feature Extraction
     self.motion_feat = ConvBlock(4, base_filter, 3, 1, 1, activation='lrelu', norm=None)
     
     ###INTERPOLATION
     #Interp_block
     motion_net = [
         ResnetBlock(base_filter, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
         for _ in range(2)]
     motion_net.append(ConvBlock(base_filter, feat, 3, 1, 1, activation='lrelu', norm=None))
     self.motion = nn.Sequential(*motion_net)
     
     t_net2 = [ConvBlock(feat*3, feat, 1, 1, 0, bias=True, activation='lrelu', norm=None)]
     t_net2.append(PyramidModule(feat,activation='lrelu'))
     t_net2.append(ConvBlock(feat, feat, 3, 1, 1, activation='lrelu', norm=None))
     self.t_net_hr = nn.Sequential(*t_net2)
     
     self.upsample_layer = nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=True)
     
     interp_b = [
         ResnetBlock(feat*5, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
         for _ in range(n_resblock)]
     interp_b.append(DeconvBlock(feat*5, feat, kernel, stride, padding, activation='lrelu', norm=None))
     self.interp_block = nn.Sequential(*interp_b)
     
     ###ITERATIVE REFINEMENT
     #Motion Up FORWARD
     modules_up_f = [
         ResnetBlock(feat*5, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
         for _ in range(n_resblock)]
     modules_up_f.append(DeconvBlock(feat*5, feat, kernel, stride, padding, activation='lrelu', norm=None))
     self.motion_up_f = nn.Sequential(*modules_up_f)
     
     #Motion Up BACKWARD
     modules_up_b = [
         ResnetBlock(feat*5, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
         for _ in range(n_resblock)]
     modules_up_b.append(DeconvBlock(feat*5, feat, kernel, stride, padding, activation='lrelu', norm=None))
     self.motion_up_b = nn.Sequential(*modules_up_b)
     
     #Motion Down
     modules_down = [
         ResnetBlock(feat, kernel_size=3, stride=1, padding=1, bias=True, activation='lrelu', norm=None) \
         for _ in range(2)]
     modules_down.append(ConvBlock(feat, feat*2, kernel, stride, padding, activation='lrelu', norm=None))
     self.motion_down = nn.Sequential(*modules_down)
     
     self.relu_bp = torch.nn.LeakyReLU(negative_slope=0.1, inplace=True)#torch.nn.PReLU()
     
     #Reconstruction
     self.reconstruction_l = ConvBlock(feat*2, 3, 3, 1, 1, activation=None, norm=None)
     self.reconstruction_h = ConvBlock(feat, 3, 3, 1, 1, activation=None, norm=None)
     
     ####ALIGNMENT
     ###RBPN
     self.RBPN = RBPN(num_channels=3, base_filter=base_filter,  feat = feat, num_stages=num_stages, n_resblock=5, nFrames=2, scale_factor=scale_factor)
     
     for m in self.modules():
         classname = m.__class__.__name__
         if classname.find('Conv2d') != -1:
     	    torch.nn.init.kaiming_normal_(m.weight)
     	    if m.bias is not None:
     		    m.bias.data.zero_()
         elif classname.find('ConvTranspose2d') != -1:
     	    torch.nn.init.kaiming_normal_(m.weight)
     	    if m.bias is not None:
     		    m.bias.data.zero_()
     
     if pretrained:
         if scale_factor == 4:
             self.RBPN.load_state_dict(torch.load("weights/pretrained/rbpn_pretrained_F2_4x.pth", map_location=lambda storage, loc: storage))    
         elif scale_factor == 2:
             self.RBPN.load_state_dict(torch.load("weights/pretrained/rbpn_pretrained_F2_2x.pth", map_location=lambda storage, loc: storage))    
         
     if freeze:
         self.freeze_model(self.RBPN)
def main():
    """ Lets begin the training process! """

    args = parser.parse_args()

    # Initialize Logger
    logger.initLogger(args.debug)

    # Load dataset
    logger.info('==> Loading datasets')
    # print(args.file_list)
    # sys.exit()

    train_set = get_training_set(args.data_dir, args.nFrames,
                                 args.upscale_factor, args.data_augmentation,
                                 args.file_list, args.other_dataset,
                                 args.patch_size, args.future_frame)
    training_data_loader = DataLoader(dataset=train_set,
                                      num_workers=args.threads,
                                      batch_size=args.batchSize,
                                      shuffle=True)

    # Use generator as RBPN
    netG = RBPN(num_channels=3,
                base_filter=256,
                feat=64,
                num_stages=3,
                n_resblock=5,
                nFrames=args.nFrames,
                scale_factor=args.upscale_factor)
    logger.info('# of Generator parameters: %s',
                sum(param.numel() for param in netG.parameters()))

    # Use DataParallel?
    if args.useDataParallel:
        gpus_list = range(args.gpus)
        netG = torch.nn.DataParallel(netG, device_ids=gpus_list)

    # Use discriminator from SRGAN
    netD = Discriminator()
    logger.info('# of Discriminator parameters: %s',
                sum(param.numel() for param in netD.parameters()))

    # Generator loss
    generatorCriterion = nn.L1Loss() if not args.APITLoss else GeneratorLoss()

    # Specify device
    device = torch.device(
        "cuda:0" if torch.cuda.is_available() and args.gpu_mode else "cpu")

    if args.gpu_mode and torch.cuda.is_available():
        utils.printCUDAStats()

        netG.cuda()
        netD.cuda()

        netG.to(device)
        netD.to(device)

        generatorCriterion.cuda()

    # Use Adam optimizer
    optimizerG = optim.Adam(netG.parameters(),
                            lr=args.lr,
                            betas=(0.9, 0.999),
                            eps=1e-8)
    optimizerD = optim.Adam(netD.parameters(),
                            lr=args.lr,
                            betas=(0.9, 0.999),
                            eps=1e-8)

    if args.APITLoss:
        logger.info(
            "Generator Loss: Adversarial Loss + Perception Loss + Image Loss + TV Loss"
        )
    else:
        logger.info("Generator Loss: L1 Loss")

    # print iSeeBetter architecture
    utils.printNetworkArch(netG, netD)

    if args.pretrained:
        modelPath = os.path.join(args.save_folder + args.pretrained_sr)
        utils.loadPreTrainedModel(gpuMode=args.gpu_mode,
                                  model=netG,
                                  modelPath=modelPath)

    # sys.exit()
    for epoch in range(args.start_epoch, args.nEpochs + 1):
        runningResults = trainModel(epoch, training_data_loader, netG, netD,
                                    optimizerD, optimizerG, generatorCriterion,
                                    device, args)

        if (epoch + 1) % (args.snapshots) == 0:
            saveModelParams(epoch, runningResults, netG, netD)
示例#6
0
#training code
if args.phase == 'train':
    dataloaders = data.DataLoader(DataLoader(args),
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=args.workers,
                                  pin_memory=True)

    device = torch.device("cuda:0")

    print("constructing model ....")
    model = RBPN(num_channels=3,
                 base_filter=256,
                 feat=64,
                 num_stages=3,
                 n_resblock=5,
                 nFrames=args.nframes,
                 scale_factor=4)

    model = nn.DataParallel(model.to(device), gpuids)

    if args.resume:
        ckpt = torch.load(args.model_path)
        new_ckpt = {}
        for key in ckpt:
            if not key.startswith('module'):
                new_key = 'module.' + key
            else:
                new_key = key
            new_ckpt[new_key] = ckpt[key]