if gt_path is None: data = itertools.zip_longest(raw_files, []) else: gt_files = sorted(gt_path.glob('*.tif')) if len(raw_files) != len(gt_files): raise ValueError( 'Mismatch between raw and ground truth file counts ' f'({len(raw_files)} vs. {len(gt_files)})') data = zip(raw_files, gt_files) else: data = [(input_path, gt_path)] model_path = get_model_path(args.model_dir) print('Loading model from', model_path) model = load_model(str(model_path), input_shape=args.block_shape) if args.block_overlap_shape is None: overlap_shape = [ max(1, x // 8) if x > 2 else 0 for x in model.input.shape.as_list()[1:-1] ] else: overlap_shape = args.block_overlap_shape if args.scale_value is None: sValue = 2000 else: sValue = args.scale_value
step2_output_path.mkdir(parents=True) if config['step3_trigger'] and config[ 'step3_output_trigger'] and not step3_output_path.exists(): print('Creating step3 output directory', step3_output_path) step3_output_path.mkdir(parents=True) if input_path.is_dir(): data = sorted(input_path.glob('*.tif')) # raw_files = sorted(input_path.glob('*.tif')) # data = itertools.zip_longest(raw_files, []) else: data = input_path if config['step1_trigger']: step1_model_path = get_model_path(config['step1_model_dir']) print('Loading step1 model from', step1_model_path) step1_model = load_model(str(step1_model_path), input_shape=config['step1_block_shape']) if config['step1_block_overlap_shape'] is None: step1_overlap_shape = [ max(1, x // 8) if x > 2 else 0 for x in step1_model.input.shape.as_list()[1:-1] ] else: step1_overlap_shape = config['step1_block_overlap_shape'] if config['step2_trigger']: step2_model_path = get_model_path(config['step2_model_dir']) print('Loading step2 model from', step2_model_path)