示例#1
0
    def test_transform_numeric(self):
        """Test the ``transform`` on numeric input.

        In this test ``transform`` should return a matrix
        representing each item in the input as one-hot encodings.

        Input:
        - Series with numeric input
        Output:
        - one-hot encoding of the input
        """
        # Setup
        ohet = OneHotEncodingTransformer()
        data = pd.Series([1, 2])
        ohet.fit(data)

        expected = np.array([
            [1, 0],
            [0, 1],
        ])

        # Run
        out = ohet.transform(data)

        # Assert
        assert not ohet.dummy_encoded
        np.testing.assert_array_equal(out, expected)
示例#2
0
    def test_fit_single(self):
        # Setup
        ohet = OneHotEncodingTransformer()

        # Run
        data = pd.Series(['a', 'a', 'a'])
        ohet.fit(data)

        # Assert
        np.testing.assert_array_equal(ohet.dummies, ['a'])
示例#3
0
    def _fit_discrete(self, column_name, raw_column_data):
        """Fit one hot encoder for discrete column."""
        ohe = OneHotEncodingTransformer()
        ohe.fit(raw_column_data)
        num_categories = len(ohe.dummies)

        return ColumnTransformInfo(
            column_name=column_name, column_type="discrete", transform=ohe,
            transform_aux=None,
            output_info=[SpanInfo(num_categories, 'softmax')],
            output_dimensions=num_categories)
示例#4
0
def test_one_hot_numerical_nans():
    """Ensure OneHotEncodingTransformer works on numerical + nan only columns."""

    data = pd.Series([1, 2, float('nan'), np.nan])

    transformer = OneHotEncodingTransformer()
    transformer.fit(data)
    transformed = transformer.transform(data)
    reverse = transformer.reverse_transform(transformed)

    pd.testing.assert_series_equal(reverse, data)
示例#5
0
    def _fit_discrete(self, column, data):
        ohe = OneHotEncodingTransformer()
        data = data[:, 0]
        ohe.fit(data)
        num_categories = len(ohe.dummies)

        return {
            "name": column,
            "encoder": ohe,
            "output_info": [(num_categories, "softmax")],
            "output_dimensions": num_categories,
        }
示例#6
0
    def _fit_discrete(self, column, data):
        ohe = OneHotEncodingTransformer()
        data = data[:, 0]
        ohe.fit(data)
        categories = len(set(data))

        return {
            'name': column,
            'encoder': ohe,
            'output_info': [(categories, 'softmax')],
            'output_dimensions': categories
        }
示例#7
0
    def test_reverse_transform_no_nans(self):
        # Setup
        ohet = OneHotEncodingTransformer()
        data = pd.Series(['a', 'b', 'c'])
        ohet.fit(data)

        # Run
        transformed = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        out = ohet.reverse_transform(transformed)

        # Assert
        expected = pd.Series(['a', 'b', 'c'])
        pd.testing.assert_series_equal(out, expected)
示例#8
0
    def test_transform_unknown(self):
        """Test the ``transform`` with unknown data.

        In this test ``transform`` should raise an error
        due to the attempt of transforming data with previously
        unseen categories.

        Input:
        - Series with unknown categorical values
        """
        # Setup
        ohet = OneHotEncodingTransformer()
        data = pd.Series(['a'])
        ohet.fit(data)

        # Assert
        with np.testing.assert_raises(ValueError):
            ohet.transform(['b'])
示例#9
0
    def test_transform_single(self):
        """Test the ``transform`` on a single category.

        In this test ``transform`` should return a column
        filled with ones.

        Input:
        - Series with a single categorical value
        Output:
        - one-hot encoding of the input
        """
        # Setup
        ohet = OneHotEncodingTransformer()
        data = pd.Series(['a', 'a', 'a'])
        ohet.fit(data)

        # Run
        out = ohet.transform(data)

        # Assert
        expected = np.array([[1], [1], [1]])
        np.testing.assert_array_equal(out, expected)
示例#10
0
    def test_transform_nans(self):
        """Test the ``transform`` with nans.

        In this test ``transform`` should return an identity matrix
        representing each item in the input as well as nans.

        Input:
        - Series with categorical values and nans
        Output:
        - one-hot encoding of the input
        """
        # Setup
        ohet = OneHotEncodingTransformer()
        data = pd.Series(['a', 'b', None])
        ohet.fit(data)

        # Run
        out = ohet.transform(data)

        # Assert
        expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
        np.testing.assert_array_equal(out, expected)
示例#11
0
    def _fit_discrete(self, data):
        """Fit one hot encoder for discrete column.

        Args:
            data (pd.DataFrame):
                A dataframe containing a column.

        Returns:
            namedtuple:
                A ``ColumnTransformInfo`` object.
        """
        column_name = data.columns[0]
        ohe = OneHotEncodingTransformer()
        ohe.fit(data, [column_name])
        num_categories = len(ohe.dummies)

        return ColumnTransformInfo(
            column_name=column_name,
            column_type='discrete',
            transform=ohe,
            output_info=[SpanInfo(num_categories, 'softmax')],
            output_dimensions=num_categories)
示例#12
0
    def test_fit_nans_numeric(self):
        """Test the ``fit`` method with nans.

        Check that the settings of the transformer
        are properly set based on the input. Encoding
        should be deactivated and NA activated.

        Input:
        - Series with containing nan values
        """

        # Setup
        ohet = OneHotEncodingTransformer()

        # Run
        data = pd.Series([1, 2, np.nan])
        ohet.fit(data)

        # Assert
        np.testing.assert_array_equal(ohet.dummies, [1, 2])
        np.testing.assert_array_equal(ohet.decoder, [1, 2, np.nan])
        assert not ohet.dummy_encoded
        assert ohet.dummy_na
示例#13
0
    def test_fit_no_nans(self):
        """Test the ``fit`` method without nans.

        Check that the settings of the transformer
        are properly set based on the input. Encoding
        should be activated

        Input:
        - Series with values
        """

        # Setup
        ohet = OneHotEncodingTransformer()

        # Run
        data = pd.Series(['a', 'b', 'c'])
        ohet.fit(data)

        # Assert
        np.testing.assert_array_equal(ohet.dummies, ['a', 'b', 'c'])
        np.testing.assert_array_equal(ohet.decoder, ['a', 'b', 'c'])
        assert ohet.dummy_encoded
        assert not ohet.dummy_na