def main(args): config = args print('loading data') data, iters, vocab, stats, Q_field = get_data(config) config.q_size = stats['question_size'] config.a_size = stats['answer_size'] config.c_size = stats['topic_size'] config.keys = ['A', 'c'] config.sizes = {'A': config.a_size, 'c': config.c_size} if config.verbose: x = next(iter(iters['val'])) print(x.answers[0].data) print('loading model') net, best_acc, config.start_epoch = get_net(config, vocab) if config.train: print("Let\'s start Training") train_all(net, data, iters, config) else: print("Let\'s start Testing") test_and_save(net, data, iters[config.test_iter], config)
rStatesSave = [] mStatesSave = [] for i, fileLists in enumerate(fileNames): for j, fList in enumerate(fileLists): dists = [] for f in fList: print i, j print f fbProbs, numSteps, model, statesInRbt, states, logProbs_T, logProbs_O, logProbs, poses, actions, obs, \ actionType, actionSelectionType, numMechanismTypes, numParticles, numRepeats, neff_fract, \ modelNums, realStates, BIAS, FTSD, FOSD, RTSD, ROSD \ = readData.get_data(dirName+f) # save real rStatesSave.append(realStates[1:]) # find max state at each step mStatesSave.append([]) for k, (Ss, lPs) in enumerate(zip(states[1:], logProbs[1:])): maxProbs = [] maxProbInds = [] for l in relevantMT: maxProbs.append(max(lPs[l])) maxProbInds.append(lPs[l].index(maxProbs[-1])) maxModelInd = maxProbs.index(max(maxProbs)) maxProbInd = maxProbInds[maxModelInd]
rStatesSave = [] mStatesSave = [] for i,fileLists in enumerate(fileNames): for j,fList in enumerate(fileLists): dists = [] for f in fList: print i,j print f fbProbs, numSteps, model, statesInRbt, states, logProbs_T, logProbs_O, logProbs, poses, actions, obs, \ actionType, actionSelectionType, numMechanismTypes, numParticles, numRepeats, neff_fract, \ modelNums, realStates, BIAS, FTSD, FOSD, RTSD, ROSD \ = readData.get_data(dirName+f) # save real rStatesSave.append(realStates[1:]) # find max state at each step mStatesSave.append([]) for k,(Ss,lPs) in enumerate(zip(states[1:],logProbs[1:])): maxProbs = [] maxProbInds = [] for l in relevantMT: maxProbs.append(max(lPs[l])) maxProbInds.append(lPs[l].index(maxProbs[-1])) maxModelInd = maxProbs.index(max(maxProbs)) maxProbInd = maxProbInds[maxModelInd]
def runNet(): np.random.seed(10) sp.random.seed(10) net = neuralNet.createNet() train_ds, test_ds = readData.get_data() train_model(net, train_ds, test_ds)
mStatesSave = [] fbProbsSave = [] for i, fileLists in enumerate(fileNames): for j, fList in enumerate(fileLists): dists = [] fbProbsList = [] for f in fList: print i, j print f fbProbs, numSteps, model, statesInRbt, states, logProbs_T, logProbs_O, logProbs, poses, actions, obs, \ actionType, actionSelectionType, numMechanismTypes, numParticles, numRepeats, neff_fract, \ modelNums, realStates, BIAS, FTSD, FOSD, RTSD, ROSD \ = readData.get_data(f) # used to be dirName+f # save fbProbs fbProbsList.append(fbProbs) # save real #rStatesSave.append(realStates[1:]) # find max state at each step #mStatesSave.append([]) #for k,(Ss,lPs) in enumerate(zip(states[1:],logProbs[1:])): #maxProbs = [] #maxProbInds = [] #for l in relevantMT: #maxProbs.append(max(lPs[l])) #maxProbInds.append(lPs[l].index(maxProbs[-1]))
import readData import sys f = sys.argv[1] fbProbs, numSteps, model, statesInRbt, states, logProbs_T, \ logProbs_O, logProbs, poses, actions, obs, \ actionType, actionSelectionType, numMechanismTypes, \ numParticles, numRepeats, neff_fract, \ modelNums, realStates, BIAS, FTSD, FOSD, RTSD, ROSD \ = readData.get_data(f) print fbProbs
for j in range(numMT): fileNames[i][j] = files[numMT * numT * i + numT * j : numMT * numT * i + numT * j + numT] rStatesSave = [] mStatesSave = [] for i, fileLists in enumerate(fileNames): for j, fList in enumerate(fileLists): dists = [] for f in fList: print i, j print f fbProbs, numSteps, model, statesInRbt, states, logProbs_T, logProbs_O, logProbs, poses, actions, obs, actionType, actionSelectionType, numMechanismTypes, numParticles, numRepeats, neff_fract, modelNums, realStates, BIAS, FTSD, FOSD, RTSD, ROSD = readData.get_data( dirName + f ) # find max state maxProbs = [] maxProbInds = [] for l in relevantMT: maxProbs.append(max(logProbs[-1][l])) maxProbInds.append(logProbs[-1][l].index(maxProbs[-1])) maxModelInd = maxProbs.index(max(maxProbs)) maxProbInd = maxProbInds[maxModelInd] maxState = states[-1][relevantMT[maxModelInd]][maxProbInd] print realStates[-1] print maxState
rStatesSave = [] mStatesSave = [] for i,fileLists in enumerate(fileNames): for j,fList in enumerate(fileLists): dists = [] for f in fList: print i,j print f fbProbs, numSteps, model, statesInRbt, states, logProbs_T, logProbs_O, logProbs, poses, actions, obs, \ actionType, actionSelectionType, numMechanismTypes, numParticles, numRepeats, neff_fract, \ modelNums, realStates, BIAS, FTSD, FOSD, RTSD, ROSD \ = readData.get_data(f) # used to be dirName+f # save real rStatesSave.append(realStates[1:]) # find max state at each step mStatesSave.append([]) for k,(Ss,lPs) in enumerate(zip(states[1:],logProbs[1:])): maxProbs = [] maxProbInds = [] for l in relevantMT: maxProbs.append(max(lPs[l])) maxProbInds.append(lPs[l].index(maxProbs[-1])) maxModelInd = maxProbs.index(max(maxProbs)) maxProbInd = maxProbInds[maxModelInd]