def main(): # FOR CIFAR-10 # dataset_generators = { # 'train': read_data.cifar10_dataset_generator('train', 512), # 'test': read_data.cifar10_dataset_generator('test', -1) # } # FOR SVHN dataset_generators = { 'train': read_data.svhn_dataset_generator('train', 512), 'test': read_data.svhn_dataset_generator('test', 512) } print("map") model_dict = model.apply_classification_loss(model.cnn_map) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100) print("stride 44") model_dict = model.apply_classification_loss(model.cnn_modification_s44) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100) print("stride 24") model_dict = model.apply_classification_loss(model.cnn_modification_s24) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100) print("stride11") model_dict = model.apply_classification_loss(model.cnn_modification_s11) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100) print("filternum=12") model_dict = model.apply_classification_loss(model.cnn_modification_f12) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100) print("filternum=24") model_dict = model.apply_classification_loss(model.cnn_modification_f24) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100) print("filternum=48") model_dict = model.apply_classification_loss(model.cnn_modification_f48) train_model(model_dict, dataset_generators, epoch_n=20, print_every=100)
def svhn_tuner(): cifar10_dataset_generators = { 'train': read_data.cifar10_dataset_generator('train', 1000), 'test': read_data.cifar10_dataset_generator('test', -1) } dataset_generators = { 'train': read_data.svhn_dataset_generator('train', 512), 'test': read_data.svhn_dataset_generator('test', 512) } cnn_expanded_dict = model2.apply_classification_loss(model2.cnn_expanded) print("####----- Running CNN_Expanded on SVHN and saving ------####") new_train_model(cnn_expanded_dict, dataset_generators, epoch_n=50, print_every=10, variable_list=cnn_expanded_dict['var_list'], save_model=True) print("#### --------- Loading saved weights into new input ------ ####") new_train_model(cnn_expanded_dict, cifar10_dataset_generators, epoch_n=100, print_every=10, variable_list=cnn_expanded_dict['var_list'], load_model=True)
def main(): # FOR SVHN dataset_generators = { 'train': read_data.svhn_dataset_generator('train', 256), 'test': read_data.svhn_dataset_generator('test', 256) } model_dict = model.apply_classification_loss(model.cnn_map) visualize(model_dict, dataset_generators, epoch_n=20, print_every=100, batch_size=256)
def test_saving(): dataset_generators = { 'train': read_data.svhn_dataset_generator('train', 512), 'test': read_data.svhn_dataset_generator('test', 512) } model_dict = model.apply_classification_loss(model.cnn_modified) new_train_model(model_dict, dataset_generators, epoch_n=100, print_every=10, variable_list=model_dict['var_list'], save_model=True, load_model=True)
def main(): # FOR CIFAR-10 # dataset_generators = { # 'train': read_data.cifar10_dataset_generator('train', 512), # 'test': read_data.cifar10_dataset_generator('test', -1) # } # FOR SVHN dataset_generators = { "train": read_data.svhn_dataset_generator("train", 512), "test": read_data.svhn_dataset_generator("test", 512), } model_dict = model.apply_classification_loss(model.cnn_map) train_model(model_dict, dataset_generators, epoch_n=50, print_every=10)
def main(): # FOR SVHN dataset_generators = { 'train': read_data.svhn_dataset_generator('train', 512), 'test': read_data.svhn_dataset_generator('test', 512) } model_dict = model.apply_classification_loss(model.cnn_map) new_train_model(model_dict, dataset_generators, epoch_n=50, print_every=30, save_model=True) cnn_expanded_dict = model.apply_classification_loss(model.cnn_expanded) new_train_model(cnn_expanded_dict, dataset_generators, epoch_n=50, print_every=30, load_model=True)