unconditonal_variable_label=label_hs) fig.suptitle('Dataset ' + DATASET_CHAR) # Compute IFORM-contours with return periods of 1 and 20 years. return_period_1 = 1 iform_contour_1 = IFormContour(fit.mul_var_dist, return_period_1, 1, 100) return_period_20 = 20 iform_contour_20 = IFormContour(fit.mul_var_dist, return_period_20, 1, 100) # Save the contours as csv files in the required format. folder_name = 'contour_coordinates/' file_name_1 = determine_file_name_e1('John', 'Doe', DATASET_CHAR, return_period_1) write_contour(iform_contour_1.coordinates[0][0], iform_contour_1.coordinates[0][1], folder_name + file_name_1, label_x=label_hs, label_y=label_tz) file_name_20 = determine_file_name_e1('John', 'Doe', DATASET_CHAR, return_period_20) write_contour(iform_contour_20.coordinates[0][0], iform_contour_20.coordinates[0][1], folder_name + file_name_20, label_x=label_hs, label_y=label_tz) # Read the contours from the csv files. (contour_hs_1, contour_tz_1) = read_contour(folder_name + file_name_1) (contour_hs_20, contour_tz_20) = read_contour(folder_name + file_name_20) # Find datapoints that exceed the 20-yr contour.
do_search_for_optimal_start=True) contour_hs_1 = c[0] contour_tz_1 = c[1] c = sort_points_to_form_continous_line(hdc_contour_20.coordinates[0][0], hdc_contour_20.coordinates[0][1], do_search_for_optimal_start=True) contour_hs_20 = c[0] contour_tz_20 = c[1] # Save the contours as csv files in the required format. folder_name = 'contour-coordinates/' file_name_1 = determine_file_name_e1('Andreas', 'Haselsteiner', DATASET_CHAR, return_period_1) write_contour(contour_hs_1, contour_tz_1, folder_name + file_name_1, label_x=label_hs, label_y=label_tz) file_name_20 = determine_file_name_e1('Andreas', 'Haselsteiner', DATASET_CHAR, return_period_20) write_contour(contour_hs_20, contour_tz_20, folder_name + file_name_20, label_x=label_hs, label_y=label_tz) # Read the contours from the csv files. (contour_hs_1, contour_tz_1) = read_contour(folder_name + file_name_1) (contour_hs_20, contour_tz_20) = read_contour(folder_name + file_name_20) # Find datapoints that exceed the 20-yr contour. hs_outside, tz_outside, hs_inside, tz_inside = \
contour_v_1 = c[0] contour_hs_1 = c[1] c = sort_points_to_form_continous_line(hdc_contour_50.coordinates[0][0], hdc_contour_50.coordinates[0][1], do_search_for_optimal_start=True) contour_v_50 = c[0] contour_hs_50 = c[1] # Save the contours as csv files in the required format. folder_name = 'contour-coordinates/' file_name_1 = determine_file_name_e1('Andreas', 'Haselsteiner', DATASET_CHAR, return_period_1) write_contour(contour_v_1, contour_hs_1, folder_name + file_name_1, label_x=label_v, label_y=label_hs) file_name_20 = determine_file_name_e1('Andreas', 'Haselsteiner', DATASET_CHAR, return_period_50) write_contour(contour_v_50, contour_hs_50, folder_name + file_name_20, label_x=label_v, label_y=label_hs) # Read the contours from the csv files. (contour_v_1, contour_hs_1) = read_contour(folder_name + file_name_1) (contour_v_50, contour_hs_50) = read_contour(folder_name + file_name_20) # Find datapoints that exceed the 20-yr contour.
sorted_v[:, j] = theta_v_ij[sorted_indices, j] sorted_hs[:, j] = theta_hs_ij[sorted_indices, j] percentile50_index = int( round((NR_OF_BOOTSTRAP_SAMPLES - 1) * (50.0 / 100.0))) bottom_percentile_index = int( round((NR_OF_BOOTSTRAP_SAMPLES - 1) * (BOTTOM_PERCENTILE / 100.0))) upper_percentile_index = int( round((NR_OF_BOOTSTRAP_SAMPLES - 1) * (UPPER_PERCENTILE / 100.0))) # Save the median, bottom and upper percentile contours. folder_name = 'contour-coordinates/' file_name_median = determine_file_name_e2('Andreas', 'Haselsteiner', NR_OF_YEARS_TO_DRAW, 'median') write_contour(sorted_v[percentile50_index, :], sorted_hs[percentile50_index, :], folder_name + file_name_median, label_x=label_v, label_y=label_hs) file_name_bottom = determine_file_name_e2('Andreas', 'Haselsteiner', NR_OF_YEARS_TO_DRAW, 'bottom') write_contour(sorted_v[bottom_percentile_index, :], sorted_hs[bottom_percentile_index, :], folder_name + file_name_bottom, label_x=label_v, label_y=label_hs) file_name_upper = determine_file_name_e2('Andreas', 'Haselsteiner', NR_OF_YEARS_TO_DRAW, 'upper') write_contour(sorted_v[upper_percentile_index, :], sorted_hs[upper_percentile_index, :], folder_name + file_name_upper, label_x=label_v,
x0_1 = lognorm.ppf(norm.cdf(u0_1), sig_x1_1, loc=0, scale=np.exp(mu_x1_1)) x0_20 = lognorm.ppf(norm.cdf(u0_20), sig_x1_20, loc=0, scale=np.exp(mu_x1_20)) #%% h = sns.jointplot(x=df.columns[2], y=df.columns[1], data=df, s=5) h.x, h.y = x0_1, x1_1 h.plot_joint(plt.plot, color='C1') h.x, h.y = x0_20, x1_20 h.plot_joint(plt.plot, color='C2') #%% E1 requirements: # Save the contours as csv files in the required format. folder_name = 'contour_coordinates/' file_name_1 = determine_file_name_e1('Asta', 'Hannesdottir', DATASET_CHAR, T1) write_contour( x1_1, #y-axis x0_1, folder_name + file_name_1, label_x=df.columns[1], label_y=df.columns[2]) file_name_20 = determine_file_name_e1('Asta', 'Hannesdottir', DATASET_CHAR, T20) write_contour(x1_20, x0_20, folder_name + file_name_20, label_x=df.columns[1], label_y=df.columns[2]) # Read the contours from the csv files. (contour_hs_1, contour_tz_1) = read_contour(folder_name + file_name_1) (contour_hs_20, contour_tz_20) = read_contour(folder_name + file_name_20) # Find datapoints that exceed the 20-yr contour.