示例#1
0
def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    reader = task_reader.MRCReader(vocab_path=args.vocab_path,
                                   label_map_config=args.label_map_config,
                                   max_seq_len=args.max_seq_len,
                                   do_lower_case=args.do_lower_case,
                                   in_tokens=args.in_tokens,
                                   random_seed=args.random_seed,
                                   tokenizer=args.tokenizer,
                                   is_classify=args.is_classify,
                                   is_regression=args.is_regression,
                                   for_cn=args.for_cn,
                                   task_id=args.task_id,
                                   doc_stride=args.doc_stride,
                                   max_query_length=args.max_query_length)

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.predict_batch_size == None:
        args.predict_batch_size = args.batch_size
    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            dev_count=dev_count,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples("train")

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    ernie_config=ernie_config,
                    is_training=True)
                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16)
                """
                fluid.memory_optimize(
                    input_program=train_program,
                    skip_opt_set=[
                        graph_vars["loss"].name,
                        graph_vars["num_seqs"].name,
                    ])
                """

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, test_graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    ernie_config=ernie_config,
                    is_training=False)

        test_prog = test_prog.clone(for_test=True)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(exe,
                            args.init_checkpoint,
                            main_program=startup_prog,
                            use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(exe,
                                    args.init_pretraining_params,
                                    main_program=startup_prog,
                                    use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(exe,
                        args.init_checkpoint,
                        main_program=startup_prog,
                        use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda,
                                           loss_name=graph_vars["loss"].name,
                                           exec_strategy=exec_strategy,
                                           main_program=train_program,
                                           num_trainers=nccl2_num_trainers,
                                           trainer_id=nccl2_trainer_id)

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_train:
        train_pyreader.start()
        steps = 0
        if warmup_steps > 0:
            graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
                    outputs = evaluate(train_exe, train_program,
                                       train_pyreader, graph_vars, "train")

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            outputs["learning_rate"]
                            if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    current_example, current_epoch = reader.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin
                    print(
                        "epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
                        "speed: %f steps/s" %
                        (current_epoch, current_example, num_train_examples,
                         steps, outputs["loss"], args.skip_steps / used_time))
                    time_begin = time.time()

                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(args.dev_set,
                                                  batch_size=args.batch_size,
                                                  epoch=1,
                                                  dev_count=1,
                                                  shuffle=False,
                                                  phase="dev"))
                        evaluate(exe,
                                 test_prog,
                                 test_pyreader,
                                 test_graph_vars,
                                 str(steps) + "_dev",
                                 examples=reader.get_examples("dev"),
                                 features=reader.get_features("dev"),
                                 args=args)

                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            reader.data_generator(args.test_set,
                                                  batch_size=args.batch_size,
                                                  epoch=1,
                                                  dev_count=1,
                                                  shuffle=False,
                                                  phase="test"))
                        evaluate(exe,
                                 test_prog,
                                 test_pyreader,
                                 test_graph_vars,
                                 str(steps) + "_test",
                                 examples=reader.get_examples("test"),
                                 features=reader.get_features("test"),
                                 args=args)

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints,
                                         "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if args.do_val:
        print("Final validation result:")
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(args.dev_set,
                                  batch_size=args.batch_size,
                                  epoch=1,
                                  dev_count=1,
                                  shuffle=False,
                                  phase="dev"))
        evaluate(exe,
                 test_prog,
                 test_pyreader,
                 test_graph_vars,
                 "dev",
                 examples=reader.get_examples("dev"),
                 features=reader.get_features("dev"),
                 args=args)

    # final eval on test set
    if args.do_test:
        print("Final test result:")
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(args.test_set,
                                  batch_size=args.batch_size,
                                  epoch=1,
                                  dev_count=1,
                                  shuffle=False,
                                  phase="test"))
        evaluate(exe,
                 test_prog,
                 test_pyreader,
                 test_graph_vars,
                 "test",
                 examples=reader.get_examples("test"),
                 features=reader.get_features("test"),
                 args=args)
示例#2
0
文件: run_mrc.py 项目: glhlr/DaiMeng
def abc(test_examples = [],init_check=''):

    s_t = str (time.localtime())  #取名用
    if init_check != '':
        args.init_checkpoint = init_check
        args.ernie_config_path = 'config/ernie_config1.json'

    if test_examples == []: #想直接输入examples曾出现异常无法使用,废弃保留代码
        while True:
            break
            Example = namedtuple('Example', ['qas_id', 'question_text', 'doc_tokens','orig_answer_text', 'start_position', 'end_position'])
            example = Example(
                qas_id = s_t + str(ii) ,
                question_text=que,
                doc_tokens= tokenization.tokenize_chinese_chars(para),
                orig_answer_text=None,
                start_position=None,
                end_position=None)
            test_examples.append(example)

            break

    reader = task_reader.MRCReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
        random_seed=args.random_seed,
        tokenizer=args.tokenizer,
        is_classify=args.is_classify,
        is_regression=args.is_regression,
        for_cn=args.for_cn,
        task_id=args.task_id,
        doc_stride=args.doc_stride,
        max_query_length=args.max_query_length)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    test_pyreader.decorate_tensor_provider(
        reader.data_generator(
            args.test_set,
            batch_size=args.batch_size,
            epoch=1,
            dev_count=1,
            shuffle=False,
            phase="test"))
    print(reader.get_examples("test"))
    mrc_result = evaluate(
        exe,
        test_prog,
        test_pyreader,
        test_graph_vars,
        "test",
        examples=reader.get_examples("test"),
        features=reader.get_features("test"),
        # examples = test_examples,
        # features=reader._convert_example_to_feature(examples=test_examples,max_seq_length=512,tokenizer=tokenization.FullTokenizer(
        # vocab_file='config/vocab.txt', do_lower_case=True),is_training =False),
        args=args)
    print('abc:mrc:return',len(mrc_result[1]))
    return mrc_result