def winnow(difficulty='EASY'): X_train, y_train = read_train_test('{}_TRAIN.csv'.format( difficulty.upper())) X_test, y_test = read_train_test('{}_TEST.csv'.format(difficulty.upper())) weights, trainguess, trainerror = trainWeights(X_train, y_train) threshold = 10000 selected = [] for i in range(len(weights)): if weights[i] > threshold: selected.append(True) else: selected.append(False) X_masked = select(X_train, selected) svc = SVC() svc.fit(X_masked, y_train) print(svc.predict(X_test[10:40])) print(y_test[10:40]) print(svc.score(X_test, y_test))
def dhm(difficulty='DIFFICULT', num_init_label=500): assert difficulty == 'DIFFICULT' num_init_label_copy = num_init_label current_model = None t = 0 # This function runs the DHM and random learner in parallel assuming a streaming data model # Input: difficulty - the difficulty as a string, 'EAST' or "MODERATE' # Additionally, you will implement a random learner for performing the # same task and compare the performance of both algorithms # generate the data. # XTrain is a 1 by num_samples vector of values in the interval [0,1]. # YTrain is a 1 by num_samples vector of labels (either 0 or 1) # YTrain is the true model X_train, y_train = read_train_test('{}_TRAIN.csv'.format( difficulty.upper())) X_test, y_test = read_train_test('{}_TEST.csv'.format(difficulty.upper())) num_samples = X_train.shape[0] num_test = X_test.shape[0] num_features = X_train.shape[1] assert y_train.shape == (num_samples, 1) assert X_test.shape == (num_test, num_features) assert y_test.shape == (num_test, 1) # vectors for identifying points in sets S and T S_mask = np.full((num_samples, 1), 0, dtype=np.int) T_mask = np.full((num_samples, 1), 0, dtype=np.int) # Labels for the points in S and T S_labels = np.full((num_samples, 1), 0, dtype=np.int) T_labels = np.full((num_samples, 1), 0, dtype=np.int) # fill a base number of samples to T for _ in range(num_init_label): x = select_random_unlabeled_point(T_mask) T_mask[x, 0] = 1 T_labels[T_mask == 1] = y_train[T_mask == 1] # R_mask is a bit vector indicating which samples have been queried by a random learner R_mask = np.full((num_samples, 1), 0, dtype=np.int) for _ in range(num_init_label): x = select_random_unlabeled_point(R_mask) R_mask[x, 0] = 1 n_quires = np.full((num_samples, 1), 0, dtype=np.int) # Blank learner is the one which predicts negative label all the time hB = DefaultModel() B_predictions = hB.predict(X_test) # number of queries per round queries = [0 for _ in range(num_samples)] # metrics needs to be recorded svm_errors = [] random_errors = [] blank_errors = [] svm_f1s = [] random_f1s = [] blank_f1s = [] # this is the main loop of the DHM algorithm for x in range(num_samples): if T_mask[x, 0] == 1: # label already fed to T num_init_label -= 1 # the label now is considered fed by the for loop continue print("round {}".format(x)) # XTrain(t) is the next instance in the data stream next_instance = X_train[[x], :] assert next_instance.shape == (1, num_features) # *************** IMPLEMENT THIS ***************** # # you will need to: # (i) learn the appropriate models by calling subroutineSVM # (ii) apply the logic of the DHM algorithm # (iii) append to DHMGeneralizationError after each call to the # oracle. i.e., DHMGeneralizationError(end+1)=abs(h-YTrain), # where h is the current model, according to DHM # (iv) implement a random learner that selects a *RANDOM* point each # time DHM selects one. # (v) append to RandGeneralizationError after each call to the # oracle. i.e., RandGeneralizationError(end+1)=abs(hr-YTrain), # where hr is the current model, according to the random learner # Note that the DHM algorithm requires the calculation of Delta, the # generalization bound. The following code computes Delta. You should # use this (after computing hpluserr (the error by the h-plus-one # model) and hminuserr (the error by the h-minus-one-model). Of course, # you need to re-compute hpluserr and hminuserr each iteration. s = np.sum(S_mask) t = np.sum(T_mask) n_quires[x, 0] = t assert x == s + t - num_init_label train_s = stack(X_train, S_mask, next_instance) train_t = select(X_train, T_mask) train_s_label = stack(S_labels, S_mask, np.full((1, 1), 0, dtype=np.int)) train_t_label = select(T_labels, T_mask) assert train_s.shape == (s + 1, num_features) assert train_t.shape == (t, num_features) assert train_s_label.shape == (s + 1, 1) assert train_t_label.shape == (t, 1) if current_model is not None: predictions = current_model.predict(train_s) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) s_error = np.sum( np.absolute(np.subtract(predictions, train_s_label))) / y_test.size print('current s error is {}'.format(s_error)) h_neg, hn_flag = subroutine_SVM(train_s, train_t, train_s_label, train_t_label) train_s_label = stack(S_labels, S_mask, np.full((1, 1), 1, dtype=np.int)) assert train_s_label.shape == (s + 1, 1) h_pos, hp_flag = subroutine_SVM(train_s, train_t, train_s_label, train_t_label) train_s_label = stack(S_labels, S_mask, np.full((1, 1), 2, dtype=np.int)) assert train_s_label.shape == (s + 1, 1) h_strong, hs_flag = subroutine_SVM(train_s, train_t, train_s_label, train_t_label) if hn_flag == 1 and hs_flag == 1: print("Only positive works") S_mask[x, 0] = 1 S_labels[x, 0] = 1 current_model = h_pos continue if hp_flag == 1 and hs_flag == 1: print("Only negative works") S_mask[x, 0] = 1 S_labels[x, 0] = 0 current_model = h_neg continue if hn_flag == 1 and hp_flag == 1: print("Only strong works") S_mask[x, 0] = 1 S_labels[x, 0] = 2 current_model = h_neg continue train_s_t = stack(X_train, S_mask, select(X_train, T_mask)) train_s_t_label = stack(S_labels, S_mask, select(T_labels, T_mask)) assert train_s_t.shape == (s + t, num_features) assert train_s_t_label.shape == (s + t, 1) hn_err = np.sum( np.absolute(np.subtract(h_neg.predict(train_s_t), train_s_t_label))) hp_err = np.sum( np.absolute(np.subtract(h_pos.predict(train_s_t), train_s_t_label))) hs_err = np.sum( np.absolute( np.subtract(h_strong.predict(train_s_t), train_s_t_label))) hn_err /= x + 1 hp_err /= x + 1 hs_err /= x + 1 ########################################### # compute Delta adapted from Homework new_idx = x + 1 # to avoid division by 0 delta = 0.01 shatter_coeff = 2 * (new_idx + 1) beta = np.sqrt( (4 / new_idx) * math.log(8 * (np.power(new_idx, 2) + x) * np.power(shatter_coeff, 2) / delta)) cap_delta = (np.power(beta, 2) + beta * (np.sqrt(hp_err) + np.sqrt(hn_err))) * .025 ########################################### if hn_err - hp_err > cap_delta and hs_err - hp_err > cap_delta: print("Positive has lowest error") S_mask[x, 0] = 1 S_labels[x, 0] = 1 current_model = h_pos continue elif hp_err - hn_err > cap_delta and hs_err - hn_err > cap_delta: print("Negative has lowest error") S_mask[x, 0] = 1 S_labels[x, 0] = 0 current_model = h_neg continue elif hp_err - hs_err > cap_delta and hn_err - hs_err > cap_delta: print("Strong has lowest error") S_mask[x, 0] = 1 S_labels[x, 0] = 2 current_model = h_strong continue # other wise add current line to T T_mask[x, 0] = 1 T_labels[x, 0] = y_train[x, 0] s = np.sum(S_mask) t = np.sum(T_mask) assert x + 1 == s + t - num_init_label train_s = select(X_train, S_mask) train_t = select(X_train, T_mask) train_s_label = select(S_labels, S_mask) train_t_label = select(T_labels, T_mask) assert (s == 0 and train_s.size == 0) or train_s.shape == (s, num_features) assert train_t.shape == (t, num_features) assert (s == 0 and train_s_label.size == 0) or train_s_label.shape == (s, 1) assert train_t_label.shape == (t, 1) h, _ = subroutine_SVM(train_s, train_t, train_s_label, train_t_label) predictions = h.predict(X_test) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) assert predictions.shape == (num_test, 1) SVMError = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('SVM error after {} queries is {}'.format(t, SVMError)) svm_errors.append(SVMError) queries[x] = t svm_f1_score = f1_score(y_test > 0, predictions > 0) print('SVM F1 after {} queries is {}'.format(t, svm_f1_score)) svm_f1s.append(svm_f1_score) # Random selection Model xr = select_random_unlabeled_point(R_mask) R_mask[xr, 0] = 1 r = np.sum(R_mask) assert r == t train_r = select(X_train, R_mask) train_r_label = select(y_train, R_mask) assert train_r.shape == (r, num_features) assert train_r_label.shape == (r, 1) hR, _ = subroutine_SVM(np.zeros((0, num_features)), train_r, np.zeros((0, 1)), train_r_label) predictions = hR.predict(X_test) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) assert predictions.shape == (num_test, 1) random_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('Random error after {} queries is {}'.format(r, random_error)) random_errors.append(random_error) random_f1_score = f1_score(y_test > 0, predictions > 0) print('Random F1 after {} queries is {}'.format(t, random_f1_score)) random_f1s.append(random_f1_score) # Blank Model (prediction all negative from the start) blank_error = np.sum(np.absolute(np.subtract(B_predictions, y_test))) / y_test.size print('Blank learner error queries is {}'.format(blank_error)) blank_errors.append(blank_error) blank_f1_score = f1_score(B_predictions > 0, predictions > 0) print('Blank F1 after {} queries is {}'.format(t, blank_f1_score)) blank_f1s.append(random_f1_score) if t > 2500: break predictions = current_model.predict(X_test) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) final_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('final error is {}'.format(final_error)) final_f1_score = f1_score(y_test > 0, predictions > 0) print('final SVM F1 is {}'.format(final_f1_score)) print('final number of queries is'.format(t)) feature_matrix, id_vector = read_blind('{}_BLINDED.csv'.format( difficulty.upper())) blinded_predictions = current_model.predict(feature_matrix) blinded_predictions = np.reshape(blinded_predictions, blinded_predictions.size) write_prediction( '{}_BLINDED_PREDICTION_{}.csv'.format(difficulty.upper(), num_init_label_copy), id_vector, blinded_predictions) with open('output/{}_metrics_{}.txt'.format(difficulty.upper(), num_init_label_copy), mode='w') as f: f.write('SVM errors\n') f.write(svm_errors.__str__()) f.write('\n') f.write('Random errors\n') f.write(random_errors.__str__()) f.write('\n') f.write('Blank errors\n') f.write(blank_errors.__str__()) f.write('\n') f.write('SVM F1 scores\n') f.write(svm_f1s.__str__()) f.write('\n') f.write('Random F1 scores\n') f.write(random_f1s.__str__()) f.write('\n') f.write('Blank F1 scores\n') f.write(blank_f1s.__str__()) f.write('\n') f.write('# queries per round\n') f.write(np.reshape(n_quires, n_quires.size).__str__()) f.write('\n') f.flush()
def active_most_proba_svm(difficulty='DIFFICULT', num_init_label=500): random.seed(0) num_init_label_copy = num_init_label current_model = None # generate the data. # XTrain is a 1 by num_samples vector of values in the interval [0,1]. # YTrain is a 1 by num_samples vector of labels (either 0 or 1) # YTrain is the true model X_train, y_train = read_train_test('{}_TRAIN.csv'.format( difficulty.upper())) X_test, y_test = read_train_test('{}_TEST.csv'.format(difficulty.upper())) num_samples = X_train.shape[0] num_test = X_test.shape[0] num_features = X_train.shape[1] assert y_train.shape == (num_samples, 1) assert X_test.shape == (num_test, num_features) assert y_test.shape == (num_test, 1) selected_label = np.full((num_samples, 1), -1, dtype=np.int) selected_mask = np.full((num_samples, 1), 0, dtype=np.int) # fill a base number of samples to selected for _ in range(num_init_label): x = select_random_unlabeled_point(selected_mask) selected_mask[x, 0] = 1 selected_label[x, 0] = y_train[x, 0] # continue to fill until has at least a 1 and a 0 and a 2 while not (np.any(selected_label == 0) and np.any(selected_label == 1) and np.any(selected_label == 2)): x = select_random_unlabeled_point(selected_mask) selected_mask[x, 0] = 1 selected_label[x, 0] = y_train[x, 0] selector = SelectKBest(chi2, k=25) selector.fit(select(X_train, selected_mask), select(selected_label, selected_mask)) current_model = None r_label = np.full((num_samples, 1), -1, dtype=np.int) r_mask = np.full((num_samples, 1), 0, dtype=np.int) for _ in range(np.sum(selected_mask)): x = select_random_unlabeled_point(r_mask) r_mask[x, 0] = 1 r_label[x, 0] = y_train[x, 0] r_selector = SelectKBest(chi2, k=25) r_selector.fit(select(X_train, r_mask), select(r_label, r_mask)) blank_model = DefaultModel() b_predictions = blank_model.predict(X_test) # metrics needs to be recorded svm_errors = [] random_errors = [] blank_errors = [] svm_f1s = [] random_f1s = [] blank_f1s = [] t = np.sum(selected_mask) while np.sum(selected_mask) < 2500: t = np.sum(selected_mask) model = SVC(class_weight='balanced', probability=True) labels_ = select(selected_label, selected_mask) model.fit(selector.transform(select(X_train, selected_mask)), np.reshape(labels_, labels_.size)) current_model = model predictions_with_proba = model.predict_proba( selector.transform(X_train)) assert predictions_with_proba.shape == (num_samples, 3) classes = model.classes_ assert classes.shape == (3, ) pos_class_idx = np.where(classes == 1)[0][0] assert pos_class_idx == 0 or pos_class_idx == 1 or pos_class_idx == 2 strong_class_idx = np.where(classes == 2)[0][0] assert strong_class_idx == 0 or strong_class_idx == 1 or strong_class_idx == 2 max_proba = 0 # actually uses pos_proba * 1 + strong_proba * 2 for difficult max_idx = 0 for i in range(num_samples): if selected_mask[i, 0] == 0: # only consider unlabeled points proba = predictions_with_proba[ i, pos_class_idx] + predictions_with_proba[ i, strong_class_idx] * 2 if proba > max_proba: max_proba = proba max_idx = i selected_mask[max_idx, 0] = 1 selected_label[max_idx, 0] = y_train[max_idx, 0] predictions = model.predict(selector.transform(X_test)) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) assert predictions.shape == (num_test, 1) svm_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('SVM error after {} queries is {}'.format(t, svm_error)) svm_errors.append(svm_error) svm_f1_score = f1_score(y_test > 0, predictions > 0) print('SVM F1 after {} queries is {}'.format(t, svm_f1_score)) svm_f1s.append(svm_f1_score) # Random selection Model xr = select_random_unlabeled_point(r_mask) r_mask[xr, 0] = 1 r_label[xr, 0] = y_train[xr, 0] r = np.sum(r_mask) t = np.sum(selected_mask) if r != t: print("r = {}, t = {}".format(r, t)) train_r = r_selector.transform(select(X_train, r_mask)) train_r_label = select(y_train, r_mask) assert train_r.shape == (r, 25) assert train_r_label.shape == (r, 1) model_r = SVC(class_weight='balanced') labels_ = select(r_label, r_mask) model_r.fit(r_selector.transform(select(X_train, r_mask)), np.reshape(labels_, labels_.size)) predictions = model_r.predict(r_selector.transform(X_test)) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) assert predictions.shape == (num_test, 1) random_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('Random error after {} queries is {}'.format(r, random_error)) random_errors.append(random_error) random_f1_score = f1_score(y_test > 0, predictions > 0) print('Random F1 after {} queries is {}'.format(t, random_f1_score)) random_f1s.append(random_f1_score) # Blank Model (prediction all negative from the start) blank_error = np.sum(np.absolute(np.subtract(b_predictions, y_test))) / y_test.size print('Blank learner error queries is {}'.format(blank_error)) blank_errors.append(blank_error) blank_f1_score = f1_score(y_test > 0, b_predictions > 0) print('Blank F1 after {} queries is {}'.format(t, blank_f1_score)) blank_f1s.append(random_f1_score) # Final writings predictions = current_model.predict(selector.transform(X_test)) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) final_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('final SVM error is {}'.format(final_error)) final_f1_score = f1_score(y_test > 0, predictions > 0) print('final SVM F1 is {}'.format(final_f1_score)) print('final number of queries is'.format(t)) feature_matrix, id_vector = read_blind('{}_BLINDED.csv'.format( difficulty.upper())) blinded_predictions = current_model.predict( selector.transform(feature_matrix)) blinded_predictions = np.reshape(blinded_predictions, blinded_predictions.size) write_prediction( 'FS_AMP_{}_BLINDED_PREDICTION_{}.csv'.format(difficulty.upper(), num_init_label_copy), id_vector, blinded_predictions) with open('output/FS_AMP_{}_metrics_{}.txt'.format(difficulty.upper(), num_init_label_copy), mode='w') as f: f.write('SVM errors\n') f.write(svm_errors.__str__()) f.write('\n') f.write('Random errors\n') f.write(random_errors.__str__()) f.write('\n') f.write('Blank errors\n') f.write(blank_errors.__str__()) f.write('\n') f.write('SVM F1 scores\n') f.write(svm_f1s.__str__()) f.write('\n') f.write('Random F1 scores\n') f.write(random_f1s.__str__()) f.write('\n') f.write('Blank F1 scores\n') f.write(blank_f1s.__str__()) f.write('\n') f.flush()
def active_most_proba_svm(difficulty='EASY', num_init_label=500): num_init_label_copy = num_init_label current_model = None # This function selecte # Input: difficulty - the difficulty as a string, 'EAST' or "MODERATE' # Additionally, you will implement a random learner for performing the # same task and compare the performance of both algorithms # generate the data. # XTrain is a 1 by num_samples vector of values in the interval [0,1]. # YTrain is a 1 by num_samples vector of labels (either 0 or 1) # YTrain is the true model X_train, y_train = read_train_test('{}_TRAIN.csv'.format( difficulty.upper())) X_test, y_test = read_train_test('{}_TEST.csv'.format(difficulty.upper())) num_samples = X_train.shape[0] num_test = X_test.shape[0] num_features = X_train.shape[1] assert y_train.shape == (num_samples, 1) assert X_test.shape == (num_test, num_features) assert y_test.shape == (num_test, 1) selected_label = np.full((num_samples, 1), -1, dtype=np.int) selected_mask = np.full((num_samples, 1), 0, dtype=np.int) # fill a base number of samples to selected for _ in range(num_init_label): x = select_random_unlabeled_point(selected_mask) selected_mask[x, 0] = 1 selected_label[x, 0] = y_train[x, 0] # continue to fill until has at least a 1 and a 0 while not (np.any(selected_label == 0) and np.any(selected_label == 1)): x = select_random_unlabeled_point(selected_mask) selected_mask[x, 0] = 1 selected_label[x, 0] = y_train[x, 0] current_model = None r_label = np.full((num_samples, 1), -1, dtype=np.int) r_mask = np.full((num_samples, 1), 0, dtype=np.int) for _ in range(np.sum(selected_mask)): x = select_random_unlabeled_point(r_mask) r_mask[x, 0] = 1 r_label[x, 0] = y_train[x, 0] hB = DefaultModel() B_predictions = hB.predict(X_test) # metrics needs to be recorded svm_errors = [] random_errors = [] blank_errors = [] svm_f1s = [] random_f1s = [] blank_f1s = [] t = np.sum(selected_mask) while np.sum(selected_mask) < 2500: t = np.sum(selected_mask) model = SVC(class_weight='balanced', probability=True) labels_ = select(selected_label, selected_mask) model.fit(select(X_train, selected_mask), np.reshape(labels_, labels_.size)) current_model = model predictions_with_proba = model.predict_proba(X_train) assert predictions_with_proba.shape == (num_samples, 2) classes = model.classes_ assert classes.shape == (2, ) pos_class_idx = np.where(classes == 1)[0][0] assert pos_class_idx == 0 or pos_class_idx == 1 max_proba = 0 max_idx = 0 for i in range(num_samples): if selected_mask[i, 0] == 0: # only consider unlabeled points if predictions_with_proba[i, pos_class_idx] > max_proba: max_proba = predictions_with_proba[i, pos_class_idx] max_idx = i selected_mask[max_idx, 0] = 1 selected_label[max_idx, 0] = y_train[max_idx, 0] predictions = model.predict(X_test) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) assert predictions.shape == (num_test, 1) svm_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('SVM error after {} queries is {}'.format(t, svm_error)) svm_errors.append(svm_error) svm_f1_score = f1_score(y_test, predictions) print('SVM F1 after {} queries is {}'.format(t, svm_f1_score)) svm_f1s.append(svm_f1_score) # Random selection Model xr = select_random_unlabeled_point(r_mask) r_mask[xr, 0] = 1 r_label[xr, 0] = y_train[xr, 0] r = np.sum(r_mask) t = np.sum(selected_mask) if r != t: print("r = {}, t = {}".format(r, t)) train_r = select(X_train, r_mask) train_r_label = select(y_train, r_mask) assert train_r.shape == (r, num_features) assert train_r_label.shape == (r, 1) model_r = SVC(class_weight='balanced') labels_ = select(r_label, r_mask) model_r.fit(select(X_train, r_mask), np.reshape(labels_, labels_.size)) assert model_r.classes_.size == 2 predictions = model_r.predict(X_test) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) assert predictions.shape == (num_test, 1) random_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('Random error after {} queries is {}'.format(r, random_error)) random_errors.append(random_error) random_f1_score = f1_score(y_test, predictions) print('Random F1 after {} queries is {}'.format(t, random_f1_score)) random_f1s.append(random_f1_score) # Blank Model (prediction all negative from the start) blank_error = np.sum(np.absolute(np.subtract(B_predictions, y_test))) / y_test.size print('Blank learner error queries is {}'.format(blank_error)) blank_errors.append(blank_error) blank_f1_score = f1_score(y_test, B_predictions) print('Blank F1 after {} queries is {}'.format(t, blank_f1_score)) blank_f1s.append(random_f1_score) # Final writings predictions = current_model.predict(X_test) if len(predictions.shape) == 1: predictions = np.reshape(predictions, (predictions.size, 1)) final_error = np.sum(np.absolute(np.subtract(predictions, y_test))) / y_test.size print('final SVM error is {}'.format(final_error)) final_f1_score = f1_score(y_test, predictions) print('final SVM F1 is {}'.format(final_f1_score)) print('final number of queries is'.format(t)) feature_matrix, id_vector = read_blind('{}_BLINDED.csv'.format( difficulty.upper())) blinded_predictions = current_model.predict(feature_matrix) blinded_predictions = np.reshape(blinded_predictions, blinded_predictions.size) write_prediction( 'AMP_{}_BLINDED_PREDICTION_{}.csv'.format(difficulty.upper(), num_init_label_copy), id_vector, blinded_predictions) with open('output/AMP_{}_metrics_{}.txt'.format(difficulty.upper(), num_init_label_copy), mode='w') as f: f.write('SVM errors\n') f.write(svm_errors.__str__()) f.write('\n') f.write('Random errors\n') f.write(random_errors.__str__()) f.write('\n') f.write('Blank errors\n') f.write(blank_errors.__str__()) f.write('\n') f.write('SVM F1 scores\n') f.write(svm_f1s.__str__()) f.write('\n') f.write('Random F1 scores\n') f.write(random_f1s.__str__()) f.write('\n') f.write('Blank F1 scores\n') f.write(blank_f1s.__str__()) f.write('\n') f.flush()
from mclearn.active import ActiveLearner, run_active_learning_expt from mclearn.heuristics import random_h, qbb_kl_h from sklearn.ensemble import BaggingClassifier from sklearn.svm import SVC from reader import read_train_test # TODO: under construction! X_train, y_train = read_train_test("EASY_TRAIN.csv") X_test, y_test = read_train_test("EASY_TEST.csv") classifier = SVC(kernel='rbf', gamma=0.1, C=10, cache_size=2000, class_weight='auto', probability=True) committee = BaggingClassifier(classifier, n_estimators=11, n_jobs=-1, max_samples=300) heuristic = qbb_kl_h initial_n = 50 training_size = 2500 sample_size = 300 verbose = True committee_samples = 300 pool_n = 300 C = 1 active_learner = ActiveLearner(classifier=classifier, heuristic=heuristic, initial_n=initial_n, training_size=training_size, sample_size=sample_size, verbose=verbose, committee=committee, committee_samples=committee_samples, pool_n=pool_n,