id[0], len(burstsNeuron)) plt.figure() plt.scatter(first_spike_time_for_fsi, fsi) plt.xlabel('First spike time (ms)') plt.ylabel('First spike time interval (ms)') ########################################################### # calculate delivery time of the first spike in the burst # ########################################################### (_, _, active_synapses) = reading.read_synapses( os.path.join(dataDir, "RA_RA_active_connections_" + str(trial) + ".bin")) (_, _, super_synapses) = reading.read_synapses( os.path.join(dataDir, "RA_RA_super_connections_" + str(trial) + ".bin")) (_, _, axonal_delays_RA2I) = reading.read_axonal_delays( os.path.join(dataDir, "axonal_delays_RA2I_" + str(trial) + ".bin")) (_, _, axonal_delays_RA2RA) = reading.read_axonal_delays( os.path.join(dataDir, "axonal_delays_RA2RA_" + str(trial) + ".bin")) (_, _, axonal_delays_I2RA) = reading.read_axonal_delays( os.path.join(dataDir, "axonal_delays_I2RA_" + str(trial) + ".bin")) nbins = 50 f = plt.figure() ax = f.add_subplot(111) utils.plotNormHist( [delay for delays in axonal_delays_RA2I for delay in delays], nbins, ax, "HVC(RA) -> HVC(I)") utils.plotNormHist(
############# HVC-I -> HVC-RA connections ############# (_, targets_id_I2RA_before, weights_I2RA_before, \ syn_lengths_I2RA_before, axonal_delays_I2RA_before) = reading.read_connections(fileI2RABefore) (_, targets_id_I2RA_after, weights_I2RA_after, \ syn_lengths_I2RA_after, axonal_delays_I2RA_after) = reading.read_connections(fileI2RAAfter) ############ HVC-RA -> HVC-RA connections ############# (_, _, weights_before) = reading.read_weights(fileWeightsBefore) (_, _, weights_after) = reading.read_weights(fileWeightsAfter) ########## Axonal delays ###################### (_, _, axonal_delays_I2RA_from_delay_file_before ) = reading.read_axonal_delays(fileAxonalDelaysI2RABefore) (_, _, axonal_delays_I2RA_from_delay_file_after ) = reading.read_axonal_delays(fileAxonalDelaysI2RAAfter) (_, _, axonal_delays_RA2RA_from_delay_file_before ) = reading.read_axonal_delays(fileAxonalDelaysRA2RABefore) (_, _, axonal_delays_RA2RA_from_delay_file_after ) = reading.read_axonal_delays(fileAxonalDelaysRA2RAAfter) (_, _, axonal_delays_RA2I_from_delay_file_before ) = reading.read_axonal_delays(fileAxonalDelaysRA2IBefore) (_, _, axonal_delays_RA2I_from_delay_file_after ) = reading.read_axonal_delays(fileAxonalDelaysRA2IAfter) ################## Activity History ################### (_, _, activity_history_before
fileWeights = os.path.join(dirname, "weights_" + str(trial_number) + ".bin") fileActiveSynapses = os.path.join( dirname, "RA_RA_active_connections_" + str(trial_number) + ".bin") fileSuperSynapses = os.path.join( dirname, "RA_RA_super_connections_" + str(trial_number) + ".bin") fileTraining = os.path.join(dirname, "training_neurons.bin") fileMature = os.path.join(dirname, "mature_" + str(trial_number) + ".bin") fileAxonalDelaysRA2RA = os.path.join( dirname, "axonal_delays_RA2RA_" + str(trial_number) + ".bin") #fileActive = "/home/eugene/Output/networks/chainGrowth/testGrowthDelays3/RA_RA_active_connections_5300.bin" #(_, _, active_synapses) = reading.read_synapses(fileActive) (_, _, axonal_delays_RA2RA) = reading.read_axonal_delays(fileAxonalDelaysRA2RA) (_, _, active_synapses) = reading.read_synapses(fileActiveSynapses) (_, _, super_synapses) = reading.read_synapses(fileSuperSynapses) (_, _, weights) = reading.read_weights(fileWeights) (_, _, mature_indicators) = reading.read_remodeled_indicators(fileMature) training_neurons = reading.read_training_neurons(fileTraining) print "Mature neurons: ", [ i for i in np.where(mature_indicators == 1)[0] if i not in training_neurons ] print "Training neurons: ", training_neurons for i in training_neurons: print "Training neuron {0} has {1} supersynapses : {2}".format( i, len(super_synapses[i]), super_synapses[i])