#plt.subplot(121),plt.imshow(roi,cmap = 'gray')
                #plt.title('Original Image'), plt.xticks([]), plt.yticks([])
                #plt.subplot(122),plt.imshow(edges,cmap = 'gray')
                #plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
                roi = cv2.medianBlur(roi, 3)
                #roi = cv2.bilateralFilter(roi,9,75,75)

                cv2.imwrite(str(it) + "roi.JPG", roi)
                #contours=c_m.find_components(edges)
                #c_m.process_image(str(it)+"roi.jpg",str(it)+"roi.jpg")
                #API.SetVariable("classify_enable_learning","0");
                #API.SetVariable("classify_enable_adaptive_matcher","0")
                #API.
                r = 0
                text = readtext.readtext(roi, r)

                print("{}\n".format(text))
                if (text == None):
                    text = str('')
                else:
                    img2 = np.zeros((512, 512, 3), np.uint8)
                    font = cv2.FONT_HERSHEY_SIMPLEX
                    if "Q8O" in text:
                        if len(text) == 11:
                            cv2.putText(img2, text, (10, 500), font, 1,
                                        (0, 153, 0), 2, cv2.LINE_AA)
                            cv2.putText(img2, "Pass", (80, 80), font, 2,
                                        (0, 153, 0), 3, cv2.LINE_AA)
                            totalpass += 1
                            cv2.putText(img2, str(totalpass), (10, 80), font,
示例#2
0
    def loopimg(name="Picture 150.png"):
        IMAGE_NAME = str(name)

        print(name)
        PATH_TO_IMAGE = os.path.join(CWD_PATH, IMAGE_NAME)

        # Number of classes the object detector can identify
        NUM_CLASSES = 4

        # Load the label map.
        #
        # Here we use internal utility functions, but anything that returns a
        # dictionary mapping integers to appropriate string labels would be fine
        label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
        categories = label_map_util.convert_label_map_to_categories(
            label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
        category_index = label_map_util.create_category_index(categories)

        # Load the Tensorflow model into memory.
        detection_graph = tf.Graph()
        with detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

            sess = tf.Session(graph=detection_graph)

# Define input and output tensors (i.e. data) for the object detection classifier

# Input tensor is the image
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

        # Output tensors are the detection boxes, scores, and classes
        # Each box represents a part of the image where a particular object was detected
        detection_boxes = detection_graph.get_tensor_by_name(
            'detection_boxes:0')

        # Each score represents level of confidence for each of the objects.
        # The score is shown on the result image, together with the class label.
        detection_scores = detection_graph.get_tensor_by_name(
            'detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name(
            'detection_classes:0')

        # Number of objects detected
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        # Load image using OpenCV and
        # expand image dimensions to have shape: [1, None, None, 3]
        # i.e. a single-column array, where each item in the column has the pixel RGB value
        image = cv2.imread(PATH_TO_IMAGE)
        image_expanded = np.expand_dims(image, axis=0)

        # Perform the actual detection by running the model with the image as input
        (boxes, scores, classes,
         num) = sess.run([
             detection_boxes, detection_scores, detection_classes,
             num_detections
         ],
                         feed_dict={image_tensor: image_expanded})
        printcount = 0
        it = 0
        boxesFiltered = []
        final_score = np.squeeze(scores)
        count = 0
        for i in range(100):
            if scores is None or final_score[i] > 0.5:
                count = count + 1

        for i in classes[0]:
            printcount = printcount + 1
            if (category_index[i]['name'] == "serialreadable"):
                print("cheese")
                checkingSerial = True
                coordinates = vis_util.return_coordinates(
                    image,
                    np.squeeze(boxes),
                    np.squeeze(classes).astype(np.int32),
                    np.squeeze(scores),
                    category_index,
                    use_normalized_coordinates=True,
                    line_thickness=8,
                    min_score_thresh=0.90)
                print(category_index[i]['name'])
                print("cheese")
                if (coordinates != None):
                    print(coordinates)
                    print(i)
                    it += 1

                    x = int(coordinates[2])
                    y = int(coordinates[0])
                    w = int(coordinates[3])
                    h = int(coordinates[1])
                    #im2, contours, hierarchy = cv2.findContours(frame,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
                    #x, y, w, h = cv2.boundingRect(contours[i])
                    roi = image[y:y + h, x:x + w]
                    #gaussian_3 = cv2.GaussianBlur(roi, (9,9), 10.0)
                    #unsharp_image = cv2.addWeighted(roi, 1.5, gaussian_3, -0.5, 0, roi)

                    roi = cv2.resize(roi,
                                     None,
                                     fx=4,
                                     fy=4,
                                     interpolation=cv2.INTER_CUBIC)
                    cv2.fastNlMeansDenoisingColored(roi, None, 15, 15, 7, 21)
                    roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
                    kernel = np.zeros((3, 3), np.uint8)
                    #roi = cv2.dilate(roi, kernel, iterations=1)
                    roi = cv2.erode(roi, kernel, iterations=3)
                    #roi = cv2.bilateralFilter(roi,9,75,75)
                    roi = cv2.medianBlur(roi, 3)
                    #edges = cv2.Canny(roi,100,200)
                    #img_dilation = c_m.dilate(edges,N=3,iterations=2)
                    #kernel = np.ones((5,5), np.uint8)
                    #img_dilation = cv2.dilate(roi, kernel, iterations=2)
                    roi = cv2.adaptiveThreshold(roi, 245,
                                                cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                                cv2.THRESH_BINARY_INV, 115, 1)
                    #ret,roi = cv2.threshold(roi,127,255,cv2.THRESH_BINARY_INV)

                    #plt.subplot(121),plt.imshow(roi,cmap = 'gray')
                    #plt.title('Original Image'), plt.xticks([]), plt.yticks([])
                    #plt.subplot(122),plt.imshow(edges,cmap = 'gray')
                    #plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
                    roi = cv2.medianBlur(roi, 3)
                    #roi = cv2.bilateralFilter(roi,9,75,75)

                    cv2.imwrite(str(name) + "zaca.png", roi)
                    print("zaca")
                    #contours=c_m.find_components(edges)
                    #c_m.process_image(str(it)+"roi.jpg",str(it)+"roi.jpg")
                    #API.SetVariable("classify_enable_learning","0");
                    #API.SetVariable("classify_enable_adaptive_matcher","0")
                    #API.
                    r = 0
                    text = readtext.readtext(roi, r)

                    print("{}\n".format(text))
                    if (text == None):
                        text = str('')
                    else:
                        img2 = np.zeros((512, 512, 3), np.uint8)
                        font = cv2.FONT_HERSHEY_SIMPLEX
                        cv2.putText(img2, text, (10, 500), font, 1,
                                    (255, 255, 255), 2, cv2.LINE_AA)
                        cv2.imshow("Results", img2)
                        checkingSerial = False
                else:
                    break
                return name
                if (printcount == count):
                    break
                return name
# Draw the results of the detection (aka 'visulaize the results')
        vis_util.visualize_boxes_and_labels_on_image_array(
            image,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=8,
            min_score_thresh=0.80)