示例#1
0
 def test_force_recomputation(self):
   """Tests that an error is thrown when there is no recompute context."""
   dropout = recomputing_dropout.RecomputingDropout(
       0.4, force_recomputation=True)
   with self.assertRaises(ValueError) as assert_raises_context:
     dropout(np.random.normal(size=(2, 8)), training=True)
   self.assertContainsExactSubsequence(
       str(assert_raises_context.exception), 'RecomputeContext is required')
示例#2
0
    def __init__(self,
                 inner_layer=None,
                 normalization_layer=None,
                 dropout_probability=0.0,
                 use_pre_activation_order=False,
                 inner_intermediate_size=None,
                 inner_activation='relu',
                 inner_kernel_initializer=None,
                 name='residual_block',
                 **kwargs):
        """Init.

    Args:
      inner_layer: Keras layer to apply as the inner layer in the residual
        block. The output of the layer must have the same shape as the input. By
        default, a 2-layer fully-connected network (via `DenseLayers`) is
        created based on the `inner_...` arguments below.
      normalization_layer: Normalization layer to apply. If `inner_layer`
        expects multiple inputs/outputs, then this should be a sequence of
        layers, one for each input. By default this is initialized to a single
        `tf.keras.layers.LayerNormalization` layer, so it must be given when
        expecting multiple `inner_layer` inputs.
      dropout_probability: The probability of dropping out a value when applying
        dropout for the block.
      use_pre_activation_order: If True, use "pre-activation" order (see class
        docstring for details).
      inner_intermediate_size: Size of intermediate fully-connected layer.
        Defaults to the input layer size. Ignored if `inner_layer` is not None.
      inner_activation: Activation function for the intermediate layer. Ignored
        if `inner_layer` is not None.
      inner_kernel_initializer: Initializer to use for fully-connected kernel
        weights. Bias weights are always initialized to 0. Ignored if
        `inner_layer` is not None.
      name: Name of the layer.
      **kwargs: Forwarded to super.
    """
        super(ResidualBlock, self).__init__(name=name, **kwargs)

        if normalization_layer is None:
            normalization_layer = tf.keras.layers.LayerNormalization(
                axis=-1, epsilon=1e-12, name='layer_norm')
        if isinstance(normalization_layer, Sequence):
            normalization_layers = normalization_layer
        else:
            normalization_layers = [normalization_layer]
        # Inner layer may be created later. Assign `normalization_layers` attribute
        # first, so that the variable order remains the same regardless.
        self.normalization_layers = normalization_layers
        self.inner_layer = inner_layer
        self.dropout_probability = dropout_probability
        self.use_pre_activation_order = use_pre_activation_order
        self.inner_intermediate_size = inner_intermediate_size
        self.inner_activation = inner_activation
        self.inner_kernel_initializer = inner_kernel_initializer
        self.dropout_layers = [
            recomputing_dropout.RecomputingDropout(rate=dropout_probability)
            for _ in self.normalization_layers
        ]
示例#3
0
 def make_head():
   inputs = tf.keras.Input(shape=(5,))
   x = tf.keras.layers.Dense(
       3, activation='tanh', name='dense', bias_initializer='glorot_normal')(
           inputs)
   x = recomputing_dropout.RecomputingDropout(0.45)(x)
   outputs = {
       'head_mask': tf.cast(tf.math.not_equal(x, 0), tf.float32),
       'y': tf.reduce_sum(x),
   }
   return tf.keras.Model(inputs, outputs, name='head')
示例#4
0
  def test_recompute_grad(self):
    """Tests that the gradient is computed correctly with recompute_grad."""
    dense = tf.keras.layers.Dense(10, input_shape=(8,))
    dropout = recomputing_dropout.RecomputingDropout(
        0.4, force_recomputation=True)

    @recompute_grad.recompute_grad
    def recompute_dense_dropout(x):
      return dropout(dense(x), training=True)

    # Define the model using dropout.
    def f(x):
      with tf.GradientTape() as tape:
        h1 = recompute_dense_dropout(x)
        h2 = recompute_dense_dropout(x)
        y = tf.math.reduce_sum(h1 + h2)
      return (tf.cast(tf.math.not_equal(h1, 0), tf.float32),
              tf.cast(tf.math.not_equal(h2, 0),
                      tf.float32), tape.gradient(y, dense.trainable_variables))

    x = tf.convert_to_tensor(np.random.normal(size=(4, 8)), tf.float32)
    mask1, mask2, gradients = f(x)
    self.evaluate(tf.compat.v1.initializers.global_variables())

    mask1, mask2, gradients = self.evaluate([mask1, mask2, gradients])
    # Make sure entries were masked and there is randomness.
    self.assertGreaterEqual(np.sum(mask1 == 0), 2)
    self.assertGreaterEqual(np.sum(mask2 == 0), 2)
    self.assertNotAllEqual(mask1, mask2)

    # Use the masks to compute exact gradients.
    def g(x):
      with tf.GradientTape() as tape:
        # Rescale proportional to dropout rate.
        h1 = (dense(x) * mask1) / 0.6
        h2 = (dense(x) * mask2) / 0.6
        y = tf.math.reduce_sum(h1 + h2)
      return tape.gradient(y, dense.trainable_variables)

    expected_gradients = self.evaluate(g(x))
    self.assertAllClose(gradients, expected_gradients)
    def __init__(self,
                 hidden_size,
                 num_heads,
                 att_dropout_prob=0.0,
                 share_kv_projections=True,
                 initializer=None,
                 name='fused_side_attention',
                 **kwargs):
        """Init.

    Args:
      hidden_size: Size of the main input hidden dimension. This will also be
        the size of the main output and intermediate queries/keys/values.
      num_heads: Number of attention heads.
      att_dropout_prob: Dropout probability for attention probabilities. Must be
        between 0.0 and 1.0. The default of 0.0 skips dropout.
      share_kv_projections: If True, key and value projections will be shared
        between main-to-main and main-to-side components. This results in 1 key
        projection per layer instead of 2 (and similarly for value projections).
      initializer: Initializer to use for non-bias variables other than the
        relative embedding table and persistent memory vectors. Bias variables
        will be initialized to 0.
      name: Name of the layer.
      **kwargs: Forwarded to super.
    """
        super(FusedSideAttention, self).__init__(name=name, **kwargs)

        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.att_dropout_prob = att_dropout_prob
        self.share_kv_projections = share_kv_projections
        self.initializer = initializer

        self._validate_init_parameters()

        def make_att_head_projection(name):
            return ProjectAttentionHeads(num_heads=num_heads,
                                         size_per_head=hidden_size //
                                         num_heads,
                                         use_bias=True,
                                         initializer=initializer,
                                         name=name)

        # TODO(urikz): Test if combining projections into one is more efficient
        self.main_query_projection = make_att_head_projection(
            'main_query_projection')
        self.main_key_projection = make_att_head_projection(
            'main_key_projection')
        self.main_value_projection = make_att_head_projection(
            'main_value_projection')
        if self.share_kv_projections:
            self.side_key_projection = self.main_key_projection
            self.side_value_projection = self.main_value_projection
        else:
            self.side_key_projection = make_att_head_projection(
                'side_key_projection')
            self.side_value_projection = make_att_head_projection(
                'side_value_projection')

        if self.att_dropout_prob != 0.0:
            self.att_dropout = recomputing_dropout.RecomputingDropout(
                rate=self.att_dropout_prob)

        self.output_projection = _make_output_projection(
            output_size=self.hidden_size,
            name='output_projection',
            kernel_initializer=initializer)
    def __init__(self,
                 hidden_size,
                 num_heads,
                 att_dropout_prob=0.0,
                 enable_default_side_input=False,
                 initializer=None,
                 top_k_attention=None,
                 pos_embed_mode=None,
                 pos_embed_size=None,
                 use_one_hot_embeddings=None,
                 name='fused_side_attention',
                 **kwargs):
        """Init.

    Args:
      hidden_size: Size of the main input hidden dimension. This will also be
        the size of the main output and intermediate queries/keys/values.
      num_heads: Number of attention heads. Must be greater or equal than 0,
        where 0 heads means that cross attention layer will have a single
        attention head WITHOUT projection matrices.
      att_dropout_prob: Dropout probability for attention probabilities. Must be
        between 0.0 and 1.0. The default of 0.0 skips dropout.
      enable_default_side_input: Add a default side input, which acts like a
        no-op attention, effective allowing attention weights to sum up
        to something less than 1.
      initializer: Initializer to use for non-bias variables other than the
        relative embedding table and persistent memory vectors. Bias variables
        will be initialized to 0.
      top_k_attention: Whether to restrict attention to the top K items only.
      pos_embed_mode: Whether and how to add positional information.
      pos_embed_size: Max position.
      use_one_hot_embeddings: Whether to use one hot embeddings.
      name: Name of the layer.
      **kwargs: Forwarded to super.
    """
        super(SideAttention, self).__init__(name=name, **kwargs)

        self.hidden_size = hidden_size
        self.num_heads = num_heads
        self.att_dropout_prob = att_dropout_prob
        self.initializer = initializer
        self.enable_default_side_input = enable_default_side_input
        self.top_k_attention = top_k_attention
        self.pos_embed_mode = pos_embed_mode

        self._validate_init_parameters()

        def make_att_head_projection(name):
            if num_heads > 0:
                return ProjectAttentionHeads(num_heads=num_heads,
                                             size_per_head=hidden_size //
                                             num_heads,
                                             use_bias=True,
                                             initializer=initializer,
                                             name=name)
            else:
                return None

        self.query_projection = make_att_head_projection('query_projection')
        self.key_projection = make_att_head_projection('key_projection')
        self.value_projection = make_att_head_projection('value_projection')

        if self.num_heads > 0:
            self.output_projection = _make_output_projection(
                output_size=self.hidden_size,
                name='output_projection',
                kernel_initializer=initializer)
        else:
            self.output_projection = tf.keras.layers.Layer()

        if self.att_dropout_prob != 0.0:
            self.att_dropout = recomputing_dropout.RecomputingDropout(
                rate=self.att_dropout_prob)

        if self.pos_embed_mode in [
                'absolute', 'absolute_add_ln', 'simple_relative',
                'query_dot_relative'
        ]:
            if pos_embed_size is None:
                raise ValueError('pos_embed_size` must be not None when '
                                 '`pos_embed_mode` is not None')
            if use_one_hot_embeddings is None:
                raise ValueError(
                    'use_one_hot_embeddings` must be not None when '
                    '`pos_embed_mode` is not None')
            self.pos_embed_size = pos_embed_size
            self.block_position_embedding = embedding.EmbeddingLookup(
                vocab_size=(pos_embed_size if self.pos_embed_mode == 'absolute'
                            else 2 * pos_embed_size + 1),
                embedding_size=(max(self.num_heads, 1) if self.pos_embed_mode
                                == 'simple_relative' else self.hidden_size),
                initializer_range=0.02,
                use_one_hot_lookup=use_one_hot_embeddings,
                name='block_position_emb_lookup')
            if self.pos_embed_mode == 'absolute_add_ln':
                self.block_position_embedding_norm = tf.keras.layers.LayerNormalization(
                    axis=-1,
                    epsilon=1e-12,
                    name='block_position_emb_layer_norm')

        elif self.pos_embed_mode is None:
            self.block_position_embedding = None
        else:
            raise ValueError('Unknown position embeddings mode: ' +
                             self.pos_embed_mode)
示例#7
0
  def test_nested_recompute_grad(self):
    """Tests nested usage of recompute_grad."""
    dense = tf.keras.layers.Dense(
        5, input_shape=(8,), bias_initializer='glorot_normal')
    dropout = recomputing_dropout.RecomputingDropout(
        0.4, force_recomputation=True)

    @recompute_grad.recompute_grad
    def recompute_dense_dropout_tower(x):
      return dropout(dense(x), training=True)

    def make_head():
      inputs = tf.keras.Input(shape=(5,))
      x = tf.keras.layers.Dense(
          3, activation='tanh', name='dense', bias_initializer='glorot_normal')(
              inputs)
      x = recomputing_dropout.RecomputingDropout(0.45)(x)
      outputs = {
          'head_mask': tf.cast(tf.math.not_equal(x, 0), tf.float32),
          'y': tf.reduce_sum(x),
      }
      return tf.keras.Model(inputs, outputs, name='head')

    head = make_head()

    # Nest recompute_grad inside another recompute_grad function.
    @recompute_grad.recompute_grad
    def recompute_model(x):
      y1 = recompute_dense_dropout_tower(x)
      y2 = recompute_dense_dropout_tower(x)
      outputs = head(y1 + y2, training=True)
      outputs.update({
          'tower1_mask': tf.cast(tf.math.not_equal(y1, 0), tf.float32),
          'tower2_mask': tf.cast(tf.math.not_equal(y2, 0), tf.float32),
      })
      return outputs

    def f(x):
      with tf.GradientTape() as tape:
        outputs = recompute_model(x)
      outputs['gradients'] = tape.gradient(
          outputs.pop('y'),
          dense.trainable_variables + head.trainable_variables)
      return outputs

    x = tf.convert_to_tensor(np.random.normal(size=(4, 8)), tf.float32)
    outputs = f(x)
    self.evaluate(tf.compat.v1.initializers.global_variables())
    outputs = self.evaluate(outputs)

    # Verify gradients are correct.
    def g(x):
      with tf.GradientTape() as tape:
        y1 = dense(x) * outputs['tower1_mask'] / 0.6
        y2 = dense(x) * outputs['tower2_mask'] / 0.6
        y = tf.reduce_sum(
            head.get_layer('dense')(y1 + y2) * outputs['head_mask'] / 0.55)
      return tape.gradient(y,
                           dense.trainable_variables + head.trainable_variables)

    # Increase tolerance from default of 1e-6 to reduce flakiness.
    self.assertAllClose(
        outputs['gradients'], self.evaluate(g(x)), rtol=2e-5, atol=2e-5)