def __init__(self, action_names, gamma, model, metrics_to_score=None, device=None) -> None: super().__init__(action_names, gamma, model, metrics_to_score) self._device = device self.ope_dm_estimator = OPEstimatorAdapter( DMEstimator(device=self._device)) self.ope_ips_estimator = OPEstimatorAdapter( IPSEstimator(device=self._device)) self.ope_dr_estimator = OPEstimatorAdapter( DoublyRobustEstimator(device=self._device)) self.ope_seq_dr_estimator = SequentialOPEstimatorAdapter( SeqDREstimator(device=self._device), gamma, device=self._device) self.ope_seq_weighted_dr_estimator = SequentialOPEstimatorAdapter( SeqDREstimator(weighted=True, device=self._device), gamma, device=self._device, ) self.ope_seq_magic_estimator = SequentialOPEstimatorAdapter( MAGICEstimator(device=self._device), gamma)
def test_switch_dr_equal_to_dm(self): """ Switch-DR with tau set at the min value should be equal to DM """ # Setting candidates to 0 will default to tau being the minimum threshold SwitchEstimator.CANDIDATES = 0 switch = SwitchDREstimator(rmax=1.0).evaluate(self.bandit_input) dm = DMEstimator().evaluate(self.bandit_input) self.assertAlmostEqual(dm.estimated_reward, switch.estimated_reward)
def __init__(self, action_names, gamma, model, metrics_to_score=None, device=None) -> None: super().__init__(action_names, gamma, model, metrics_to_score) self._device = device self.ope_dm_estimator = OPEstimatorAdapter( DMEstimator(device=self._device)) self.ope_ips_estimator = OPEstimatorAdapter( IPSEstimator(device=self._device)) self.ope_dr_estimator = OPEstimatorAdapter( DoublyRobustEstimator(device=self._device))
def test_seq2slate_eval_data_page(self): """ Create 3 slate ranking logs and evaluate using Direct Method, Inverse Propensity Scores, and Doubly Robust. The logs are as follows: state: [1, 0, 0], [0, 1, 0], [0, 0, 1] indices in logged slates: [3, 2], [3, 2], [3, 2] model output indices: [2, 3], [3, 2], [2, 3] logged reward: 4, 5, 7 logged propensities: 0.2, 0.5, 0.4 predicted rewards on logged slates: 2, 4, 6 predicted rewards on model outputted slates: 1, 4, 5 predicted propensities: 0.4, 0.3, 0.7 When eval_greedy=True: Direct Method uses the predicted rewards on model outputted slates. Thus the result is expected to be (1 + 4 + 5) / 3 Inverse Propensity Scores would scale the reward by 1.0 / logged propensities whenever the model output slate matches with the logged slate. Since only the second log matches with the model output, the IPS result is expected to be 5 / 0.5 / 3 Doubly Robust is the sum of the direct method result and propensity-scaled reward difference; the latter is defined as: 1.0 / logged_propensities * (logged reward - predicted reward on logged slate) * Indicator(model slate == logged slate) Since only the second logged slate matches with the model outputted slate, the DR result is expected to be (1 + 4 + 5) / 3 + 1.0 / 0.5 * (5 - 4) / 3 When eval_greedy=False: Only Inverse Propensity Scores would be accurate. Because it would be too expensive to compute all possible slates' propensities and predicted rewards for Direct Method. The expected IPS = (0.4 / 0.2 * 4 + 0.3 / 0.5 * 5 + 0.7 / 0.4 * 7) / 3 """ batch_size = 3 state_dim = 3 src_seq_len = 2 tgt_seq_len = 2 candidate_dim = 2 reward_net = FakeSeq2SlateRewardNetwork() seq2slate_net = FakeSeq2SlateTransformerNet() src_seq = torch.eye(candidate_dim).repeat(batch_size, 1, 1) tgt_out_idx = torch.LongTensor([[3, 2], [3, 2], [3, 2]]) tgt_out_seq = src_seq[ torch.arange(batch_size).repeat_interleave(tgt_seq_len), tgt_out_idx.flatten() - 2, ].reshape(batch_size, tgt_seq_len, candidate_dim) ptb = rlt.PreprocessedTrainingBatch( training_input=rlt.PreprocessedRankingInput( state=rlt.FeatureData(float_features=torch.eye(state_dim)), src_seq=rlt.FeatureData(float_features=src_seq), tgt_out_seq=rlt.FeatureData(float_features=tgt_out_seq), src_src_mask=torch.ones(batch_size, src_seq_len, src_seq_len), tgt_out_idx=tgt_out_idx, tgt_out_probs=torch.tensor([0.2, 0.5, 0.4]), slate_reward=torch.tensor([4.0, 5.0, 7.0]), ), extras=rlt.ExtraData( sequence_number=torch.tensor([0, 0, 0]), mdp_id=np.array(["0", "1", "2"]), ), ) edp = EvaluationDataPage.create_from_tensors_seq2slate( seq2slate_net, reward_net, ptb.training_input, eval_greedy=True) logger.info( "---------- Start evaluating eval_greedy=True -----------------") doubly_robust_estimator = OPEstimatorAdapter(DoublyRobustEstimator()) dm_estimator = OPEstimatorAdapter(DMEstimator()) ips_estimator = OPEstimatorAdapter(IPSEstimator()) switch_estimator = OPEstimatorAdapter(SwitchEstimator()) switch_dr_estimator = OPEstimatorAdapter(SwitchDREstimator()) doubly_robust = doubly_robust_estimator.estimate(edp) inverse_propensity = ips_estimator.estimate(edp) direct_method = dm_estimator.estimate(edp) # Verify that Switch with low exponent is equivalent to IPS switch_ips = switch_estimator.estimate(edp, exp_base=1) # Verify that Switch with no candidates is equivalent to DM switch_dm = switch_estimator.estimate(edp, candidates=0) # Verify that SwitchDR with low exponent is equivalent to DR switch_dr_dr = switch_dr_estimator.estimate(edp, exp_base=1) # Verify that SwitchDR with no candidates is equivalent to DM switch_dr_dm = switch_dr_estimator.estimate(edp, candidates=0) logger.info(f"{direct_method}, {inverse_propensity}, {doubly_robust}") avg_logged_reward = (4 + 5 + 7) / 3 self.assertAlmostEqual(direct_method.raw, (1 + 4 + 5) / 3, delta=1e-6) self.assertAlmostEqual(direct_method.normalized, direct_method.raw / avg_logged_reward, delta=1e-6) self.assertAlmostEqual(inverse_propensity.raw, 5 / 0.5 / 3, delta=1e-6) self.assertAlmostEqual( inverse_propensity.normalized, inverse_propensity.raw / avg_logged_reward, delta=1e-6, ) self.assertAlmostEqual(doubly_robust.raw, direct_method.raw + 1 / 0.5 * (5 - 4) / 3, delta=1e-6) self.assertAlmostEqual(doubly_robust.normalized, doubly_robust.raw / avg_logged_reward, delta=1e-6) self.assertAlmostEqual(switch_ips.raw, inverse_propensity.raw, delta=1e-6) self.assertAlmostEqual(switch_dm.raw, direct_method.raw, delta=1e-6) self.assertAlmostEqual(switch_dr_dr.raw, doubly_robust.raw, delta=1e-6) self.assertAlmostEqual(switch_dr_dm.raw, direct_method.raw, delta=1e-6) logger.info( "---------- Finish evaluating eval_greedy=True -----------------") logger.info( "---------- Start evaluating eval_greedy=False -----------------") edp = EvaluationDataPage.create_from_tensors_seq2slate( seq2slate_net, reward_net, ptb.training_input, eval_greedy=False) doubly_robust_estimator = OPEstimatorAdapter(DoublyRobustEstimator()) dm_estimator = OPEstimatorAdapter(DMEstimator()) ips_estimator = OPEstimatorAdapter(IPSEstimator()) doubly_robust = doubly_robust_estimator.estimate(edp) inverse_propensity = ips_estimator.estimate(edp) direct_method = dm_estimator.estimate(edp) self.assertAlmostEqual( inverse_propensity.raw, (0.4 / 0.2 * 4 + 0.3 / 0.5 * 5 + 0.7 / 0.4 * 7) / 3, delta=1e-6, ) self.assertAlmostEqual( inverse_propensity.normalized, inverse_propensity.raw / avg_logged_reward, delta=1e-6, ) logger.info( "---------- Finish evaluating eval_greedy=False -----------------")
description="Read command line parameters.") parser.add_argument("-p", "--parameters", help="Path to config file.") args = parser.parse_args(sys.argv[1:]) with open(args.parameters, "r") as f: params = json.load(f) if "dataset" not in params: raise Exception('Please define "dataset" in config file') random.seed(1234) np.random.seed(1234) torch.random.manual_seed(1234) dataset = UCIMultiClassDataset(params["dataset"]) log_trainer = LogisticRegressionTrainer() log_epsilon = 0.1 tgt_trainer = SGDClassifierTrainer() tgt_epsilon = 0.1 dm_trainer = DecisionTreeTrainer() experiments = [( ( DMEstimator(DecisionTreeTrainer()), IPSEstimator(), DoublyRobustEstimator(DecisionTreeTrainer()), ), 1000, ) for _ in range(100)] evaluate_all(experiments, dataset, log_trainer, log_epsilon, tgt_trainer, tgt_epsilon, 0)
logs = [] for i in range(num_epsidoes): train_choices = random.sample(range(num_total_samples), num_sample) samples = [] for i in train_choices: context = MultiClassContext(i) logged_action, logged_dist = log_policy(context) logged_reward = log_model(context)[logged_action] target_action, target_dist = target_policy(context) samples.append( LogSample( context, logged_action, logged_dist, logged_reward, target_action, target_dist, )) logs.append(Log(samples)) input = BanditsEstimatorInput(action_space, logs, target_model, gt_model) result = DMEstimator().evaluate(input) logging.info(f"DM result: {result}") result = IPSEstimator().evaluate(input) logging.info(f"IPS result: {result}") result = DoublyRobustEstimator().evaluate(input) logging.info(f"DR result: {result}")