def _estimate_value(self): tgt_generator = PolicyLogGenerator(self._env, self._policy) log = {} for state in self._env.states: mdps = [] for _ in range(self._num_episodes): mdps.append(tgt_generator.generate_log(state)) log[state] = mdps for state, mdps in log.items(): avg = RunningAverage() for mdp in mdps: discount = 1.0 r = 0.0 for t in mdp: r += discount * t.reward discount *= self._gamma avg.add(r) self._state_values[state] = avg.average
def test_gridworld_sequential_adapter(self): """ Create a gridworld environment, logging policy, and target policy Evaluates target policy using the direct OPE sequential doubly robust estimator, then transforms the log into an evaluation data page which is passed to the ope adapter. This test is meant to verify the adaptation of EDPs into RLEstimatorInputs as employed by ReAgent since ReAgent provides EDPs to Evaluators. Going from EDP -> RLEstimatorInput is more involved than RLEstimatorInput -> EDP since the EDP does not store the state at each timestep in each MDP, only the corresponding logged outputs & model outputs. Thus, the adapter must do some tricks to represent these timesteps as states so the ope module can extract the correct outputs. Note that there is some randomness in the model outputs since the model is purposefully noisy. However, the same target policy is being evaluated on the same logged walks through the gridworld, so the two results should be close in value (within 1). """ random.seed(0) np.random.seed(0) torch.random.manual_seed(0) device = torch.device("cuda") if torch.cuda.is_available() else None gridworld = GridWorld.from_grid( [ ["s", "0", "0", "0", "0"], ["0", "0", "0", "W", "0"], ["0", "0", "0", "0", "0"], ["0", "W", "0", "0", "0"], ["0", "0", "0", "0", "g"], ], max_horizon=TestOPEModuleAlgs.MAX_HORIZON, ) action_space = ActionSpace(4) opt_policy = TabularPolicy(action_space) trainer = DPTrainer(gridworld, opt_policy) value_func = trainer.train(gamma=TestOPEModuleAlgs.GAMMA) behavivor_policy = RandomRLPolicy(action_space) target_policy = EpsilonGreedyRLPolicy(opt_policy, TestOPEModuleAlgs.NOISE_EPSILON) model = NoiseGridWorldModel( gridworld, action_space, epsilon=TestOPEModuleAlgs.NOISE_EPSILON, max_horizon=TestOPEModuleAlgs.MAX_HORIZON, ) value_func = DPValueFunction(target_policy, model, TestOPEModuleAlgs.GAMMA) ground_truth = DPValueFunction(target_policy, gridworld, TestOPEModuleAlgs.GAMMA) log = [] log_generator = PolicyLogGenerator(gridworld, behavivor_policy) num_episodes = TestOPEModuleAlgs.EPISODES for state in gridworld.states: for _ in range(num_episodes): log.append(log_generator.generate_log(state)) estimator_input = RLEstimatorInput( gamma=TestOPEModuleAlgs.GAMMA, log=log, target_policy=target_policy, value_function=value_func, ground_truth=ground_truth, ) edp = rlestimator_input_to_edp(estimator_input, len(model.action_space)) dr_estimator = SeqDREstimator(weight_clamper=None, weighted=False, device=device) module_results = SequentialOPEstimatorAdapter.estimator_results_to_cpe_estimate( dr_estimator.evaluate(estimator_input)) adapter_results = SequentialOPEstimatorAdapter( dr_estimator, TestOPEModuleAlgs.GAMMA, device=device).estimate(edp) self.assertAlmostEqual( adapter_results.raw, module_results.raw, delta=TestOPEModuleAlgs.CPE_PASS_BAR, ), f"OPE adapter results differed too much from underlying module (Diff: {abs(adapter_results.raw - module_results.raw)} > {TestOPEModuleAlgs.CPE_PASS_BAR})" self.assertLess( adapter_results.raw, TestOPEModuleAlgs.CPE_MAX_VALUE ), f"OPE adapter results are too large ({adapter_results.raw} > {TestOPEModuleAlgs.CPE_MAX_VALUE})"
action_space, epsilon=0.3, max_horizon=1000) value_func = DPValueFunction(target_policy, model, GAMMA) ground_truth = DPValueFunction(target_policy, gridworld, GAMMA) logging.info(f"Target Policy ground truth values:\n" f"{gridworld.dump_value_func(ground_truth)}") log = {} log_generator = PolicyLogGenerator(gridworld, behavivor_policy) num_episodes = 200 for state in gridworld.states: mdps = [] for _ in range(num_episodes): mdps.append(log_generator.generate_log(state)) log[state] = mdps logging.info(f"Generated {len(mdps)} logs for {state}") estimator_input = RLEstimatorInput( gamma=GAMMA, log=log, target_policy=target_policy, value_function=value_func, ground_truth=ground_truth, ) DMEstimator(device=device).evaluate(estimator_input) IPSEstimator(weight_clamper=None, weighted=False, device=device).evaluate(estimator_input)
class MonteCarloTrainer(object): def __init__(self, env: Environment, policy: TabularPolicy): self._env = env self._policy = policy self._log_generator = PolicyLogGenerator(env, policy) def train( self, iterations: int, gamma: float = 0.9, first_visit: bool = True, update_interval: int = 20, ): i = 0 value_counts = {} while i < iterations: i += 1 for state in self._env.states: mdp = self._log_generator.generate_log(state) if first_visit: vcounts = {} for t in mdp: if t.last_state is None or t.action is None: continue key = (t.last_state, t.action) if key in vcounts: vcounts[key] += 1 else: vcounts[key] = 1 g = 0 for t in reversed(mdp): if t.last_state is None or t.action is None: continue g = gamma * g + t.reward key = (t.last_state, t.action) vc = vcounts[key] if vc > 1: self._update_state_value(value_counts, t.last_state, t.action, g) vc -= 1 if vc == 0: del vcounts[key] else: vcounts[key] = vc else: g = 0 for t in reversed(mdp): if t.last_state is None or t.action is None: continue g = gamma * g + t.reward self._update_state_value(value_counts, t.last_state, t.action, g) if i % update_interval == 0 and self._update_policy(value_counts): break def _update_state_value(self, value_counts, state, action, g: float): key = (state, action) sv, sc = value_counts[key] if key in value_counts else (0.0, 0) sc += 1 sv = sv + (g - sv) / sc value_counts[key] = (sv, sc) def _update_policy(self, value_counts) -> bool: stable = True for state in self._env.states: probs = [] for a in self._policy.action_space: key = (state, a) if key not in value_counts: probs.append(0.0) else: v, c = value_counts[key] probs.append(v * c) probs = torch.nn.functional.softmax(torch.tensor(probs), dim=0).tolist() if self._policy.update(state, probs) >= 1.0e-6: stable = False return stable
class MonteCarloValueFunction(TabularValueFunction): def __init__( self, policy: RLPolicy, env: Environment, gamma: float = 0.99, first_visit: bool = True, count_threshold: int = 100, max_iteration: int = 200, ): super().__init__(policy, env, gamma) self._env = env self._first_visit = first_visit self._count_threshold = count_threshold self._max_iteration = max_iteration self._log_generator = PolicyLogGenerator(env, policy) self._state_counts = {} def _state_value(self, state: State): i = 0 state_count = self._state_counts[ state] if state in self._state_counts else 0 while state_count < self._count_threshold and i < self._max_iteration: i += 1 mdp = self._log_generator.generate_log(state) if self._first_visit: state_counts = {} for t in mdp: if t.last_state is None: continue if t.last_state in state_counts: state_counts[t.last_state] += 1 else: state_counts[t.last_state] = 1 g = 0 for t in reversed(mdp): if t.last_state is None: continue g = self._gamma * g + t.reward counts = state_counts[t.last_state] if counts > 1: self._update_state_value(t.last_state, g) counts -= 1 if counts == 0: del state_counts[t.last_state] else: state_counts[t.last_state] = counts else: g = 0 for t in reversed(mdp): if t.last_state is None: continue g = self._gamma * g + t.reward self._update_state_value(t.last_state, g) state_count = (self._state_counts[state] if state in self._state_counts else 0) return super()._state_value(state) def _update_state_value(self, state: State, g: float): sv = super()._state_value(state) sc = self._state_counts[state] if state in self._state_counts else 0 sc += 1 sv = sv + (g - sv) / sc self._state_values[state] = sv self._state_counts[state] = sc def state_value(self, state: State) -> float: return self._state_value(state) def reset(self, clear_state_values: bool = False): if clear_state_values: self._state_values.clear() self._state_counts.clear()