示例#1
0
 def _log_histogram_and_mean(self, log_key, val):
     try:
         SummaryWriterContext.add_histogram(log_key, val)
         SummaryWriterContext.add_scalar(f"{log_key}/mean", val.mean())
     except ValueError:
         logger.warning(
             f"Cannot create histogram for key: {log_key}; "
             "this is likely because you have NULL value in your input; "
             f"value: {val}")
         raise
示例#2
0
文件: actor.py 项目: zhaonann/ReAgent
    def get_log_prob(self, state, squashed_action):
        """
        Action is expected to be squashed with tanh
        """
        loc, scale_log = self._get_loc_and_scale_log(state)
        # This is not getting exported; we can use it
        n = Normal(loc, scale_log.exp())
        raw_action = self._atanh(squashed_action)

        log_prob = n.log_prob(raw_action)
        squash_correction = self._squash_correction(squashed_action)
        if SummaryWriterContext._global_step % 1000 == 0:
            SummaryWriterContext.add_histogram("actor/get_log_prob/loc",
                                               loc.detach().cpu())
            SummaryWriterContext.add_histogram("actor/get_log_prob/scale_log",
                                               scale_log.detach().cpu())
            SummaryWriterContext.add_histogram("actor/get_log_prob/log_prob",
                                               log_prob.detach().cpu())
            SummaryWriterContext.add_histogram(
                "actor/get_log_prob/squash_correction",
                squash_correction.detach().cpu())
        log_prob = torch.sum(log_prob - squash_correction,
                             dim=1).reshape(-1, 1)

        return log_prob
示例#3
0
文件: actor.py 项目: zwcdp/ReAgent
    def forward(self, input):
        loc, scale_log = self._get_loc_and_scale_log(input.state)
        r = torch.randn_like(scale_log, device=scale_log.device)
        action = torch.tanh(loc + r * scale_log.exp())
        if not self.training:
            # ONNX doesn't like reshape either..
            return rlt.ActorOutput(action=action)
        # Since each dim are independent, log-prob is simply sum
        log_prob = self._log_prob(r, scale_log)
        squash_correction = self._squash_correction(action)
        if SummaryWriterContext._global_step % 1000 == 0:
            SummaryWriterContext.add_histogram("actor/forward/loc", loc.detach().cpu())
            SummaryWriterContext.add_histogram(
                "actor/forward/scale_log", scale_log.detach().cpu()
            )
            SummaryWriterContext.add_histogram(
                "actor/forward/log_prob", log_prob.detach().cpu()
            )
            SummaryWriterContext.add_histogram(
                "actor/forward/squash_correction", squash_correction.detach().cpu()
            )
        log_prob = torch.sum(log_prob - squash_correction, dim=1)

        return rlt.ActorOutput(
            action=action, log_prob=log_prob.reshape(-1, 1), action_mean=loc
        )
示例#4
0
文件: actor.py 项目: zrion/ReAgent
    def get_log_prob(self, state: rlt.FeatureData,
                     squashed_action: torch.Tensor):
        """
        Action is expected to be squashed with tanh
        """
        if self.use_l2_normalization:
            # TODO: calculate log_prob for l2 normalization
            # https://math.stackexchange.com/questions/3120506/on-the-distribution-of-a-normalized-gaussian-vector
            # http://proceedings.mlr.press/v100/mazoure20a/mazoure20a.pdf
            pass

        loc, scale_log = self._get_loc_and_scale_log(state)
        raw_action = torch.atanh(squashed_action)
        r = (raw_action - loc) / scale_log.exp()
        log_prob = self._normal_log_prob(r, scale_log)
        squash_correction = self._squash_correction(squashed_action)
        if SummaryWriterContext._global_step % 1000 == 0:
            SummaryWriterContext.add_histogram("actor/get_log_prob/loc",
                                               loc.detach().cpu())
            SummaryWriterContext.add_histogram("actor/get_log_prob/scale_log",
                                               scale_log.detach().cpu())
            SummaryWriterContext.add_histogram("actor/get_log_prob/log_prob",
                                               log_prob.detach().cpu())
            SummaryWriterContext.add_histogram(
                "actor/get_log_prob/squash_correction",
                squash_correction.detach().cpu())
        return torch.sum(log_prob - squash_correction, dim=1).reshape(-1, 1)
示例#5
0
文件: actor.py 项目: zrion/ReAgent
    def forward(self, state: rlt.FeatureData):
        loc, scale_log = self._get_loc_and_scale_log(state)
        r = torch.randn_like(scale_log, device=scale_log.device)
        raw_action = loc + r * scale_log.exp()
        squashed_action = self._squash_raw_action(raw_action)
        squashed_loc = self._squash_raw_action(loc)
        if SummaryWriterContext._global_step % 1000 == 0:
            SummaryWriterContext.add_histogram("actor/forward/loc",
                                               loc.detach().cpu())
            SummaryWriterContext.add_histogram("actor/forward/scale_log",
                                               scale_log.detach().cpu())

        return rlt.ActorOutput(
            action=squashed_action,
            log_prob=self.get_log_prob(state, squashed_action),
            squashed_mean=squashed_loc,
        )
示例#6
0
 def _sample_action(self, loc: torch.Tensor, scale_log: torch.Tensor):
     r = torch.randn_like(scale_log, device=scale_log.device)
     action = torch.tanh(loc + r * scale_log.exp())
     # Since each dim are independent, log-prob is simply sum
     log_prob = self.actor_network._log_prob(r, scale_log)
     squash_correction = self.actor_network._squash_correction(action)
     if SummaryWriterContext._global_step % 1000 == 0:
         SummaryWriterContext.add_histogram("actor/forward/loc",
                                            loc.detach().cpu())
         SummaryWriterContext.add_histogram("actor/forward/scale_log",
                                            scale_log.detach().cpu())
         SummaryWriterContext.add_histogram("actor/forward/log_prob",
                                            log_prob.detach().cpu())
         SummaryWriterContext.add_histogram(
             "actor/forward/squash_correction",
             squash_correction.detach().cpu())
     log_prob = torch.sum(log_prob - squash_correction, dim=1)
     return action, log_prob
示例#7
0
 def _log_prob(self, loc: torch.Tensor, scale_log: torch.Tensor,
               squashed_action: torch.Tensor):
     # This is not getting exported; we can use it
     n = torch.distributions.Normal(loc, scale_log.exp())
     raw_action = self.actor_network._atanh(squashed_action)
     log_prob = n.log_prob(raw_action)
     squash_correction = self.actor_network._squash_correction(
         squashed_action)
     if SummaryWriterContext._global_step % 1000 == 0:
         SummaryWriterContext.add_histogram("actor/get_log_prob/loc",
                                            loc.detach().cpu())
         SummaryWriterContext.add_histogram("actor/get_log_prob/scale_log",
                                            scale_log.detach().cpu())
         SummaryWriterContext.add_histogram("actor/get_log_prob/log_prob",
                                            log_prob.detach().cpu())
         SummaryWriterContext.add_histogram(
             "actor/get_log_prob/squash_correction",
             squash_correction.detach().cpu())
     log_prob = torch.sum(log_prob - squash_correction, dim=1)
     return log_prob
示例#8
0
    def train(self, training_batch: rlt.PolicyNetworkInput) -> None:
        """
        IMPORTANT: the input action here is assumed to be preprocessed to match the
        range of the output of the actor.
        """
        assert isinstance(training_batch, rlt.PolicyNetworkInput)

        self.minibatch += 1

        state = training_batch.state
        action = training_batch.action
        next_state = training_batch.next_state
        reward = training_batch.reward
        not_terminal = training_batch.not_terminal

        # Generate target = r + y * min (Q1(s',pi(s')), Q2(s',pi(s')))
        with torch.no_grad():
            next_actor = self.actor_network_target(next_state).action
            noise = torch.randn_like(next_actor) * self.noise_variance
            next_actor = (next_actor +
                          noise.clamp(*self.noise_clip_range)).clamp(
                              *CONTINUOUS_TRAINING_ACTION_RANGE)
            next_state_actor = (next_state, rlt.FeatureData(next_actor))
            next_q_value = self.q1_network_target(*next_state_actor)

            if self.q2_network is not None:
                next_q_value = torch.min(
                    next_q_value, self.q2_network_target(*next_state_actor))

            target_q_value = reward + self.gamma * next_q_value * not_terminal.float(
            )

        # Optimize Q1 and Q2
        # NOTE: important to zero here (instead of using _maybe_update)
        # since q1 may have accumulated gradients from actor network update
        self.q1_network_optimizer.zero_grad()
        q1_value = self.q1_network(state, action)
        q1_loss = self.q_network_loss(q1_value, target_q_value)
        q1_loss.backward()
        self.q1_network_optimizer.step()

        if self.q2_network:
            self.q2_network_optimizer.zero_grad()
            q2_value = self.q2_network(state, action)
            q2_loss = self.q_network_loss(q2_value, target_q_value)
            q2_loss.backward()
            self.q2_network_optimizer.step()

        # Only update actor and target networks after a fixed number of Q updates
        if self.minibatch % self.delayed_policy_update == 0:
            self.actor_network_optimizer.zero_grad()
            actor_action = self.actor_network(state).action
            actor_q1_value = self.q1_network(state,
                                             rlt.FeatureData(actor_action))
            actor_loss = -(actor_q1_value.mean())
            actor_loss.backward()
            self.actor_network_optimizer.step()

            self._soft_update(self.q1_network, self.q1_network_target,
                              self.tau)
            self._soft_update(self.q2_network, self.q2_network_target,
                              self.tau)
            self._soft_update(self.actor_network, self.actor_network_target,
                              self.tau)

        # Logging at the end to schedule all the cuda operations first
        if (self.tensorboard_logging_freq != 0
                and self.minibatch % self.tensorboard_logging_freq == 0):
            logs = {
                "loss/q1_loss": q1_loss,
                "loss/actor_loss": actor_loss,
                "q_value/q1_value": q1_value,
                "q_value/next_q_value": next_q_value,
                "q_value/target_q_value": target_q_value,
                "q_value/actor_q1_value": actor_q1_value,
            }
            if self.q2_network:
                logs.update({
                    "loss/q2_loss": q2_loss,
                    "q_value/q2_value": q2_value
                })

            for k, v in logs.items():
                v = v.detach().cpu()
                if v.dim() == 0:
                    # pyre-fixme[16]: `SummaryWriterContext` has no attribute
                    #  `add_scalar`.
                    SummaryWriterContext.add_scalar(k, v.item())
                    continue

                elif v.dim() == 2:
                    v = v.squeeze(1)
                assert v.dim() == 1
                SummaryWriterContext.add_histogram(k, v.numpy())
                SummaryWriterContext.add_scalar(f"{k}_mean", v.mean().item())

        self.loss_reporter.report(
            td_loss=float(q1_loss),
            reward_loss=None,
            logged_rewards=reward,
            model_values_on_logged_actions=q1_value,
        )
示例#9
0
    def train(self, training_batch: rlt.PolicyNetworkInput) -> None:
        """
        IMPORTANT: the input action here is assumed to match the
        range of the output of the actor.
        """
        if isinstance(training_batch, TrainingDataPage):
            training_batch = training_batch.as_policy_network_training_batch()

        assert isinstance(training_batch, rlt.PolicyNetworkInput)

        self.minibatch += 1

        state = training_batch.state
        action = training_batch.action
        reward = training_batch.reward
        discount = torch.full_like(reward, self.gamma)
        not_done_mask = training_batch.not_terminal

        # We need to zero out grad here because gradient from actor update
        # should not be used in Q-network update
        self.actor_network_optimizer.zero_grad()
        self.q1_network_optimizer.zero_grad()
        if self.q2_network is not None:
            self.q2_network_optimizer.zero_grad()
        if self.value_network is not None:
            self.value_network_optimizer.zero_grad()

        with torch.enable_grad():
            #
            # First, optimize Q networks; minimizing MSE between
            # Q(s, a) & r + discount * V'(next_s)
            #

            q1_value = self.q1_network(state, action)
            if self.q2_network:
                q2_value = self.q2_network(state, action)
            actor_output = self.actor_network(state)

            # Optimize Alpha
            if self.alpha_optimizer is not None:
                alpha_loss = -((self.log_alpha *
                                (actor_output.log_prob +
                                 self.target_entropy).detach()).mean())
                self.alpha_optimizer.zero_grad()
                alpha_loss.backward()
                self.alpha_optimizer.step()
                self.entropy_temperature = self.log_alpha.exp()

            with torch.no_grad():
                if self.value_network is not None:
                    next_state_value = self.value_network_target(
                        training_batch.next_state.float_features)
                else:
                    next_state_actor_output = self.actor_network(
                        training_batch.next_state)
                    next_state_actor_action = (
                        training_batch.next_state,
                        rlt.FeatureData(next_state_actor_output.action),
                    )
                    next_state_value = self.q1_network_target(
                        *next_state_actor_action)

                    if self.q2_network is not None:
                        target_q2_value = self.q2_network_target(
                            *next_state_actor_action)
                        next_state_value = torch.min(next_state_value,
                                                     target_q2_value)

                    log_prob_a = self.actor_network.get_log_prob(
                        training_batch.next_state,
                        next_state_actor_output.action)
                    log_prob_a = log_prob_a.clamp(-20.0, 20.0)
                    next_state_value -= self.entropy_temperature * log_prob_a

                if self.gamma > 0.0:
                    target_q_value = (
                        reward +
                        discount * next_state_value * not_done_mask.float())
                else:
                    # This is useful in debugging instability issues
                    target_q_value = reward

            q1_loss = F.mse_loss(q1_value, target_q_value)
            q1_loss.backward()
            self._maybe_run_optimizer(self.q1_network_optimizer,
                                      self.minibatches_per_step)
            if self.q2_network:
                # pyre-fixme[18]: Global name `q2_value` is undefined.
                q2_loss = F.mse_loss(q2_value, target_q_value)
                q2_loss.backward()
                self._maybe_run_optimizer(self.q2_network_optimizer,
                                          self.minibatches_per_step)

            # Second, optimize the actor; minimizing KL-divergence between
            # propensity & softmax of value.  Due to reparameterization trick,
            # it ends up being log_prob(actor_action) - Q(s, actor_action)

            state_actor_action = (state, rlt.FeatureData(actor_output.action))
            q1_actor_value = self.q1_network(*state_actor_action)
            min_q_actor_value = q1_actor_value
            if self.q2_network:
                q2_actor_value = self.q2_network(*state_actor_action)
                min_q_actor_value = torch.min(q1_actor_value, q2_actor_value)

            actor_loss = (self.entropy_temperature * actor_output.log_prob -
                          min_q_actor_value)
            # Do this in 2 steps so we can log histogram of actor loss
            actor_loss_mean = actor_loss.mean()

            if self.add_kld_to_loss:
                if self.apply_kld_on_mean:
                    action_batch_m = torch.mean(actor_output.action_mean,
                                                axis=0)
                    action_batch_v = torch.var(actor_output.action_mean,
                                               axis=0)
                else:
                    action_batch_m = torch.mean(actor_output.action, axis=0)
                    action_batch_v = torch.var(actor_output.action, axis=0)
                kld = (
                    0.5
                    # pyre-fixme[16]: `int` has no attribute `sum`.
                    * ((action_batch_v +
                        (action_batch_m - self.action_emb_mean)**2) /
                       self.action_emb_variance - 1 +
                       self.action_emb_variance.log() -
                       action_batch_v.log()).sum())

                actor_loss_mean += self.kld_weight * kld

            actor_loss_mean.backward()
            self._maybe_run_optimizer(self.actor_network_optimizer,
                                      self.minibatches_per_step)

            #
            # Lastly, if applicable, optimize value network; minimizing MSE between
            # V(s) & E_a~pi(s) [ Q(s,a) - log(pi(a|s)) ]
            #

            if self.value_network is not None:
                state_value = self.value_network(state.float_features)

                if self.logged_action_uniform_prior:
                    log_prob_a = torch.zeros_like(min_q_actor_value)
                    target_value = min_q_actor_value
                else:
                    with torch.no_grad():
                        log_prob_a = actor_output.log_prob
                        log_prob_a = log_prob_a.clamp(-20.0, 20.0)
                        target_value = (min_q_actor_value -
                                        self.entropy_temperature * log_prob_a)

                value_loss = F.mse_loss(state_value, target_value.detach())
                value_loss.backward()
                self._maybe_run_optimizer(self.value_network_optimizer,
                                          self.minibatches_per_step)

        # Use the soft update rule to update the target networks
        if self.value_network is not None:
            self._maybe_soft_update(
                self.value_network,
                self.value_network_target,
                self.tau,
                self.minibatches_per_step,
            )
        else:
            self._maybe_soft_update(
                self.q1_network,
                self.q1_network_target,
                self.tau,
                self.minibatches_per_step,
            )
            if self.q2_network is not None:
                self._maybe_soft_update(
                    self.q2_network,
                    self.q2_network_target,
                    self.tau,
                    self.minibatches_per_step,
                )

        # Logging at the end to schedule all the cuda operations first
        if (self.tensorboard_logging_freq != 0
                and self.minibatch % self.tensorboard_logging_freq == 0):
            SummaryWriterContext.add_histogram("q1/logged_state_value",
                                               q1_value)
            if self.q2_network:
                SummaryWriterContext.add_histogram("q2/logged_state_value",
                                                   q2_value)

            # pyre-fixme[16]: `SummaryWriterContext` has no attribute `add_scalar`.
            SummaryWriterContext.add_scalar("entropy_temperature",
                                            self.entropy_temperature)
            SummaryWriterContext.add_histogram("log_prob_a", log_prob_a)
            if self.value_network:
                SummaryWriterContext.add_histogram("value_network/target",
                                                   target_value)

            SummaryWriterContext.add_histogram("q_network/next_state_value",
                                               next_state_value)
            SummaryWriterContext.add_histogram("q_network/target_q_value",
                                               target_q_value)
            SummaryWriterContext.add_histogram("actor/min_q_actor_value",
                                               min_q_actor_value)
            SummaryWriterContext.add_histogram("actor/action_log_prob",
                                               actor_output.log_prob)
            SummaryWriterContext.add_histogram("actor/loss", actor_loss)
            if self.add_kld_to_loss:
                SummaryWriterContext.add_histogram("kld/mean", action_batch_m)
                SummaryWriterContext.add_histogram("kld/var", action_batch_v)
                SummaryWriterContext.add_scalar("kld/kld", kld)

        self.loss_reporter.report(
            td_loss=float(q1_loss),
            reward_loss=None,
            logged_rewards=reward,
            model_values_on_logged_actions=q1_value,
            model_propensities=actor_output.log_prob.exp(),
            model_values=min_q_actor_value,
        )
示例#10
0
 def test_swallowing_histogram_value_error(self):
     with TemporaryDirectory() as tmp_dir:
         writer = SummaryWriter(tmp_dir)
         with summary_writer_context(writer):
             SummaryWriterContext.add_histogram("bad_histogram",
                                                torch.ones(100, 1))
示例#11
0
    def dist(self, input: rlt.PreprocessedState):
        state = input.state.float_features

        x = state
        for i, activation in enumerate(self.activations[:-1]):
            if self.use_batch_norm:
                x = self.batch_norm_ops[i](x)

            x = self.layers[i](x)
            if activation == "linear":
                continue
            elif activation == "tanh":
                activation_func = torch.tanh
            else:
                activation_func = getattr(F, activation)
            x = activation_func(x)

        value = self.value(x).unsqueeze(dim=1)
        raw_advantage = self.advantage(x).reshape(-1, self.num_actions,
                                                  self.num_atoms)
        advantage = raw_advantage - raw_advantage.mean(dim=1, keepdim=True)

        q_value = value + advantage

        if SummaryWriterContext._global_step % 1000 == 0:
            SummaryWriterContext.add_histogram(
                "dueling_network/{}/value".format(self._name),
                value.detach().mean(dim=2).cpu(),
            )
            SummaryWriterContext.add_scalar(
                "dueling_network/{}/mean_value".format(self._name),
                value.detach().mean().cpu(),
            )
            SummaryWriterContext.add_histogram(
                "dueling_network/{}/q_value".format(self._name),
                q_value.detach().mean(dim=2).cpu(),
            )
            SummaryWriterContext.add_scalar(
                "dueling_network/{}/mean_q_value".format(self._name),
                q_value.detach().mean().cpu(),
            )
            SummaryWriterContext.add_histogram(
                "dueling_network/{}/raw_advantage".format(self._name),
                raw_advantage.detach().mean(dim=2).cpu(),
            )
            SummaryWriterContext.add_scalar(
                "dueling_network/{}/mean_raw_advantage".format(self._name),
                raw_advantage.detach().mean().cpu(),
            )
            for i in range(advantage.shape[1]):
                a = advantage.detach()[:, i, :].mean(dim=1)
                SummaryWriterContext.add_histogram(
                    "dueling_network/{}/advantage/{}".format(self._name, i),
                    a.cpu())
                SummaryWriterContext.add_scalar(
                    "dueling_network/{}/mean_advantage/{}".format(
                        self._name, i),
                    a.mean().cpu(),
                )

        return q_value
示例#12
0
    def forward(self,
                input) -> Union[NamedTuple, torch.FloatTensor]:  # type: ignore
        output_tensor = False
        if self.parametric_action:
            state = input.state.float_features
            action = input.action.float_features
        else:
            state = input.state.float_features
            action = None

        x = state
        for i, activation in enumerate(self.activations[:-1]):
            if self.use_batch_norm:
                x = self.batch_norm_ops[i](x)

            x = self.layers[i](x)
            if activation == "linear":
                continue
            elif activation == "tanh":
                activation_func = torch.tanh
            else:
                activation_func = getattr(F, activation)
            x = activation_func(x)

        value = self.value(x)
        if action is not None:
            x = torch.cat((x, action), dim=1)
        raw_advantage = self.advantage(x)
        if self.parametric_action:
            advantage = raw_advantage
        else:
            advantage = raw_advantage - raw_advantage.mean(dim=1, keepdim=True)

        q_value = value + advantage

        if SummaryWriterContext._global_step % 1000 == 0:
            SummaryWriterContext.add_histogram(
                "dueling_network/{}/value".format(self._name),
                value.detach().cpu())
            SummaryWriterContext.add_scalar(
                "dueling_network/{}/mean_value".format(self._name),
                value.detach().mean().cpu(),
            )
            SummaryWriterContext.add_histogram(
                "dueling_network/{}/q_value".format(self._name),
                q_value.detach().cpu())
            SummaryWriterContext.add_scalar(
                "dueling_network/{}/mean_q_value".format(self._name),
                q_value.detach().mean().cpu(),
            )
            SummaryWriterContext.add_histogram(
                "dueling_network/{}/raw_advantage".format(self._name),
                raw_advantage.detach().cpu(),
            )
            SummaryWriterContext.add_scalar(
                "dueling_network/{}/mean_raw_advantage".format(self._name),
                raw_advantage.detach().mean().cpu(),
            )
            if not self.parametric_action:
                advantage = advantage.detach()
                for i in range(advantage.shape[1]):
                    a = advantage[:, i]
                    SummaryWriterContext.add_histogram(
                        "dueling_network/{}/advantage/{}".format(
                            self._name, i), a.cpu())
                    SummaryWriterContext.add_scalar(
                        "dueling_network/{}/mean_advantage/{}".format(
                            self._name, i),
                        a.mean().cpu(),
                    )

        if output_tensor:
            return q_value  # type: ignore
        elif self.parametric_action:
            return rlt.SingleQValue(q_value=q_value)  # type: ignore
        else:
            return rlt.AllActionQValues(q_values=q_value)  # type: ignore
示例#13
0
    def train(self, training_batch) -> None:
        """
        IMPORTANT: the input action here is assumed to be preprocessed to match the
        range of the output of the actor.
        """
        if hasattr(training_batch, "as_policy_network_training_batch"):
            training_batch = training_batch.as_policy_network_training_batch()

        learning_input = training_batch.training_input
        self.minibatch += 1

        state = learning_input.state
        action = learning_input.action
        next_state = learning_input.next_state
        reward = learning_input.reward
        not_done_mask = learning_input.not_terminal

        action = self._maybe_scale_action_in_train(action.float_features)

        max_action = (self.max_action_range_tensor_training
                      if self.max_action_range_tensor_training else torch.ones(
                          action.shape, device=self.device))
        min_action = (self.min_action_range_tensor_serving
                      if self.min_action_range_tensor_serving else
                      -torch.ones(action.shape, device=self.device))

        # Compute current value estimates
        current_state_action = rlt.PreprocessedStateAction(
            state=state,
            action=rlt.PreprocessedFeatureVector(float_features=action))
        q1_value = self.q1_network(current_state_action).q_value
        if self.q2_network:
            q2_value = self.q2_network(current_state_action).q_value
        actor_action = self.actor_network(
            rlt.PreprocessedState(state=state)).action

        # Generate target = r + y * min (Q1(s',pi(s')), Q2(s',pi(s')))
        with torch.no_grad():
            next_actor = self.actor_network_target(
                rlt.PreprocessedState(state=next_state)).action
            next_actor += (torch.randn_like(next_actor) *
                           self.target_policy_smoothing).clamp(
                               -self.noise_clip, self.noise_clip)
            next_actor = torch.max(torch.min(next_actor, max_action),
                                   min_action)
            next_state_actor = rlt.PreprocessedStateAction(
                state=next_state,
                action=rlt.PreprocessedFeatureVector(
                    float_features=next_actor),
            )
            next_state_value = self.q1_network_target(next_state_actor).q_value

            if self.q2_network is not None:
                next_state_value = torch.min(
                    next_state_value,
                    self.q2_network_target(next_state_actor).q_value)

            target_q_value = (
                reward + self.gamma * next_state_value * not_done_mask.float())

        # Optimize Q1 and Q2
        q1_loss = F.mse_loss(q1_value, target_q_value)
        q1_loss.backward()
        self._maybe_run_optimizer(self.q1_network_optimizer,
                                  self.minibatches_per_step)
        if self.q2_network:
            q2_loss = F.mse_loss(q2_value, target_q_value)
            q2_loss.backward()
            self._maybe_run_optimizer(self.q2_network_optimizer,
                                      self.minibatches_per_step)

        # Only update actor and target networks after a fixed number of Q updates
        if self.minibatch % self.delayed_policy_update == 0:
            actor_loss = -self.q1_network(
                rlt.PreprocessedStateAction(
                    state=state,
                    action=rlt.PreprocessedFeatureVector(
                        float_features=actor_action),
                )).q_value.mean()
            actor_loss.backward()
            self._maybe_run_optimizer(self.actor_network_optimizer,
                                      self.minibatches_per_step)

            # Use the soft update rule to update the target networks
            self._maybe_soft_update(
                self.q1_network,
                self.q1_network_target,
                self.tau,
                self.minibatches_per_step,
            )
            self._maybe_soft_update(
                self.actor_network,
                self.actor_network_target,
                self.tau,
                self.minibatches_per_step,
            )
            if self.q2_network is not None:
                self._maybe_soft_update(
                    self.q2_network,
                    self.q2_network_target,
                    self.tau,
                    self.minibatches_per_step,
                )

        # Logging at the end to schedule all the cuda operations first
        if (self.tensorboard_logging_freq != 0
                and self.minibatch % self.tensorboard_logging_freq == 0):
            SummaryWriterContext.add_histogram("q1/logged_state_value",
                                               q1_value)
            if self.q2_network:
                SummaryWriterContext.add_histogram("q2/logged_state_value",
                                                   q2_value)

            SummaryWriterContext.add_histogram("q_network/next_state_value",
                                               next_state_value)
            SummaryWriterContext.add_histogram("q_network/target_q_value",
                                               target_q_value)
            SummaryWriterContext.add_histogram("actor/loss", actor_loss)

        self.loss_reporter.report(
            td_loss=float(q1_loss),
            reward_loss=None,
            logged_rewards=reward,
            model_values_on_logged_actions=q1_value,
        )
示例#14
0
def _log_histogram_and_mean(name, key, x):
    SummaryWriterContext.add_histogram(f"dueling_network/{name}/{key}",
                                       x.detach().cpu())
    SummaryWriterContext.add_scalar(f"dueling_network/{name}/mean_{key}",
                                    x.detach().mean().cpu())