ray.init(log_to_driver=False) manager = SampleManager(**kwargs) # where to save your results to: create this directory in advance! saving_path = os.getcwd() + "/progress_cartpole" # keys for replay buffer -> what you will need for optimization optim_keys = ["state", "action", "reward", "state_new", "not_done"] # initialize buffer manager.initilize_buffer(buffer_size, optim_keys) # initilize progress aggregator manager.initialize_aggregator(path=saving_path, saving_after=5, aggregator_keys=["loss", "time_steps"]) # initial testing: print("test before training: ") manager.test(test_steps, test_episodes=10, do_print=True, render=True) # get initial agent agent = manager.get_agent() for e in range(epochs): # training core # experience replay print("collecting experience..")
# Initialize the loss function mse_loss = tf.keras.losses.MeanSquaredError() # Initialize the optimizer optimizer = tf.keras.optimizers.Adam(learning_rate) # Initialize ray.init(log_to_driver=False) manager = SampleManager(**kwargs) # Where to save your results to: create this directory in advance! saving_path = os.getcwd() + "/progress_LunarLanderContinuous" # Initialize progress aggregator manager.initialize_aggregator(path=saving_path, saving_after=5, aggregator_keys=["loss", 'reward', 'time']) rewards = [] # Get initial agent agent = manager.get_agent() print('TRAINING') for e in range(max_episodes): # Sample data to optimize print('sampling...') sample_dict = manager.sample(sample_size=sampled_batches * optimization_batch_size, from_buffer=False)
returns=['monte_carlo', 'value_estimate', 'log_prob']) epochs = 30 saving_path = os.getcwd() + "/hw3_results" saving_after = 5 sample_size = 150 optim_batch_size = 8 gamma = .99 test_steps = 1000 # Factor of how much the new policy is allowed to differ from the old one epsilon = 0.2 entropy_weight = 0.01 # initilize progress aggregator manager.initialize_aggregator(path=saving_path, saving_after=5, aggregator_keys=["loss", "reward"]) agent = manager.get_agent() optimizer = tf.keras.optimizers.Adam(learning_rate=.0001) for e in range(epochs): sample_dict = manager.sample(sample_size, from_buffer=False) print(f"collected data for: {sample_dict.keys()}") # Shift value estimate by one to the left to get the value estimate of next state state_value = tf.squeeze(sample_dict['value_estimate']) state_value_new = tf.roll(state_value, -1, axis=0) not_done = tf.cast(sample_dict['not_done'], tf.bool) state_value_new = tf.where(not_done, state_value_new, 0)
epochs = 10 sample_size = 500 # training steps per epoch # discount gamma = 0.95 learning_rate = 0.2 # keys needed for tabular q optim_keys = ['state', 'action', 'reward', 'state_new', 'not_done'] # initialize buffer manager.initialize_buffer(buffer_size) agent = manager.get_agent() # initialize progress aggregator manager.initialize_aggregator(path=saving_path, saving_after=saving_after, aggregator_keys=['time_steps', 'rewards']) # initial testing: print('test before training: ') manager.test(test_steps, test_episodes=10, do_print=True, evaluation_measure='time_and_reward') for e in range(epochs): print('collecting experience..') data = manager.get_data() manager.store_in_buffer(data)
def train_td3(args, model, action_dimension=None): print(args) tf.keras.backend.set_floatx('float32') ray.init(log_to_driver=False) # hyper parameters buffer_size = args.buffer_size # 10e6 in their repo, not possible with our ram epochs = args.epochs saving_path = os.getcwd() + "/" + args.saving_dir saving_after = 5 sample_size = args.sample_size optim_batch_size = args.batch_size gamma = args.gamma test_steps = 100 # 1000 in their repo policy_delay = 2 rho = .046 policy_noise = args.policy_noise policy_noise_clip = .5 msg_dim = args.msg_dim # 32 in their repo learning_rate = args.learning_rate save_args(args, saving_path) env_test_instance = gym.make('BipedalWalker-v3') if action_dimension is None: action_dimension = copy(env_test_instance.action_space.shape[0]) model_kwargs = { # action dimension for modular actions 'action_dimension': action_dimension, 'min_action': copy(env_test_instance.action_space.low)[0], 'max_action': copy(env_test_instance.action_space.high)[0], 'msg_dimension': msg_dim, 'fix_sigma': True, 'hidden_units': args.hidden_units } del env_test_instance manager = SampleManager(model, 'BipedalWalker-v3', num_parallel=(os.cpu_count() - 1), total_steps=150, action_sampling_type="continuous_normal_diagonal", is_tf=True, model_kwargs=model_kwargs) optim_keys = [ 'state', 'action', 'reward', 'state_new', 'not_done', ] manager.initialize_buffer(buffer_size, optim_keys) manager.initialize_aggregator(path=saving_path, saving_after=saving_after, aggregator_keys=["loss", "reward"]) agent = manager.get_agent() optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) # fill buffer print("Filling buffer before training..") while len(manager.buffer.buffer[ manager.buffer.keys[0]]) < manager.buffer.size: # Gives you state action reward trajectories data = manager.get_data() manager.store_in_buffer(data) # track time while training timer = time.time() last_t = timer target_agent = manager.get_agent() for e in range(epochs): # off policy sample_dict = manager.sample(sample_size, from_buffer=True) print(f"collected data for: {sample_dict.keys()}") # cast values to float32 and create data dict sample_dict['state'] = tf.cast(sample_dict['state'], tf.float32) sample_dict['action'] = tf.cast(sample_dict['action'], tf.float32) sample_dict['reward'] = tf.cast(sample_dict['reward'], tf.float32) sample_dict['state_new'] = tf.cast(sample_dict['state_new'], tf.float32) sample_dict['not_done'] = tf.cast(sample_dict['not_done'], tf.float32) data_dict = dict_to_dict_of_datasets(sample_dict, batch_size=optim_batch_size) total_loss = 0 for state, action, reward, state_new, not_done in \ zip(data_dict['state'], data_dict['action'], data_dict['reward'], data_dict['state_new'], data_dict['not_done']): action_new = target_agent.act(state_new) # add noise to action_new action_new = action_new + tf.clip_by_value( tf.random.normal(action_new.shape, 0., policy_noise), -policy_noise_clip, policy_noise_clip) # clip action_new to action space action_new = tf.clip_by_value( action_new, manager.env_instance.action_space.low, manager.env_instance.action_space.high) # calculate target with double-Q-learning state_action_new = tf.concat([state_new, action_new], axis=-1) q_values0 = target_agent.model.critic0(state_action_new) q_values1 = target_agent.model.critic1(state_action_new) q_values = tf.concat([q_values0, q_values1], axis=-1) q_targets = tf.squeeze(tf.reduce_min(q_values, axis=-1)) critic_target = reward + gamma * not_done * q_targets state_action = tf.concat([state, action], axis=-1) # update critic 0 with tf.GradientTape() as tape: q_output = agent.model.critic0(state_action) loss = tf.keras.losses.MSE(tf.squeeze(critic_target), tf.squeeze(q_output)) total_loss += loss gradients = tape.gradient(loss, agent.model.critic0.trainable_variables) optimizer.apply_gradients( zip(gradients, agent.model.critic0.trainable_variables)) # update critic 1 with tf.GradientTape() as tape: q_output = agent.model.critic1(state_action) loss = tf.keras.losses.MSE(tf.squeeze(critic_target), tf.squeeze(q_output)) total_loss += loss gradients = tape.gradient(loss, agent.model.critic1.trainable_variables) optimizer.apply_gradients( zip(gradients, agent.model.critic1.trainable_variables)) # update actor with delayed policy update if e % policy_delay == 0: with tf.GradientTape() as tape: actor_output = agent.model.actor(state) action = reparam_action(actor_output, agent.model.action_dimension, agent.model.min_action, agent.model.max_action) state_action = tf.concat([state, action], axis=-1) q_val = agent.model.critic0(state_action) actor_loss = -tf.reduce_mean(q_val) total_loss += actor_loss actor_gradients = tape.gradient( actor_loss, agent.model.actor.trainable_variables) optimizer.apply_gradients( zip(actor_gradients, agent.model.actor.trainable_variables)) # Update agent manager.set_agent(agent.get_weights()) agent = manager.get_agent() if e % policy_delay == 0: # Polyak averaging new_weights = list(rho * np.array(target_agent.get_weights()) + (1. - rho) * np.array(agent.get_weights())) target_agent.set_weights(new_weights) reward = manager.test(test_steps, evaluation_measure="reward") manager.update_aggregator(loss=total_loss, reward=reward) print( f"epoch ::: {e} loss ::: {total_loss} avg reward ::: {np.mean(reward)}" ) if e % saving_after == 0: manager.save_model(saving_path, e) # needed time and remaining time estimation current_t = time.time() time_needed = (current_t - last_t) / 60. time_remaining = (current_t - timer) / 60. / (e + 1) * (epochs - (e + 1)) print( 'Finished epoch %d of %d. Needed %1.f min for this epoch. Estimated time remaining: %.1f min' % (e + 1, epochs, time_needed, time_remaining)) last_t = current_t manager.load_model(saving_path) print("done") print("testing optimized agent") manager.test(test_steps, test_episodes=10, render=True) ray.shutdown()
buffer_size = 5000 test_steps = 100 epochs = 30 sample_size = 1000 optim_batch_size = 1 saving_after = 5 training = True optim_keys = [ 'state', 'action', 'reward', 'state_new', 'not_done', 'value_estimate' ] # initialize aggregator aggregator_keys = ['actor_loss', 'time_steps', 'reward'] manager.initialize_aggregator(path=saving_path, saving_after=10, aggregator_keys=aggregator_keys) # test before training print('Test before training:') manager.test(test_steps, render=False, do_print=True, evaluation_measure="time_and_reward") # get initial agent agent = manager.get_agent() # initialize the optimizer adam = tf.keras.optimizers.Adam(learning_rate=0.0001)
# initilialize parameters, buffer and aggregator gamma = 0.99 buffer_size = 5000 test_steps = 1000 epochs = 20 sample_size = 1000 optim_batch_size = 8 saving_after = 5 optim_keys = ['state', 'action', 'reward', 'state_new', 'not_done'] manager.initilize_buffer(buffer_size, optim_keys) manager.initialize_aggregator(path=saving_path, saving_after=5, aggregator_keys=['loss', 'time_steps']) # test before training print('Test before training:') manager.test(test_steps, render=False, do_print=True, evaluation_measure="time_and_reward") # get initial agent agent = manager.get_agent() #print("trainable variables:") #print(agent.model.trainable_variables) # initialize the loss
saving_path = os.getcwd() + "/progress_TabQ" buffer_size = 50000 epochs = 10 sample_size = 10000 step_size = 0.2 gamma = 1 assert (0 < step_size <= 1), "Step size should be between (0,1]" # Initialize buffer manager.initilize_buffer(buffer_size) # Initilize progress aggregator manager.initialize_aggregator(path=saving_path, saving_after=5, aggregator_keys=["error", "steps"]) # Get initial agent agent = manager.get_agent() print('TRAINING') for e in range(epochs): # Experience replay print("collecting experience..") data = manager.get_data() manager.store_in_buffer(data) # Sample data to optimize on from buffer sample_dict = manager.sample(sample_size)
"epsilon": EPSILON } manager = SampleManager(**kwargs) # specify where to save results and ensure that the folder exists saving_path = Path(os.getcwd() + SAVING_DIRECTORY) saving_path.mkdir(parents=True, exist_ok=True) saving_path_model = Path(os.getcwd() + SAVING_DIRECTORY + '/model') saving_path_model.mkdir(parents=True, exist_ok=True) # initialize manager optim_keys = ['state', 'action', 'reward', 'state_new', 'not_done'] manager.initilize_buffer(BUFFER_SIZE, optim_keys) aggregator_keys=['loss', 'time_steps', 'reward'] manager.initialize_aggregator(saving_path, 5, aggregator_keys) # initialize the optimizers optimizer = Adam(learning_rate=LEARNING_RATE) print('# =============== INITIAL TESTING =============== #') manager.test(MAX_TEST_STEPS, 5, evaluation_measure='time_and_reward', do_print=True, render=True) # get the initial agent agent = manager.get_agent() print('# =============== START TRAINING ================ #') for e in range(1, EPOCHS+1): print(f'# ============== EPOCH {e}/{EPOCHS} ============== #') print('# ============= collecting samples ============== #') # collect experience and save it to ERP buffer