def process(args): # Create a graph from the training set nodedict = graph.records_to_graph() # Build the model using DeepWalk and Word2Vec G = graph.load_adjacencylist("out.adj", undirected=True) walks = graph.build_deepwalk_corpus(G, num_paths=args.number_walks, path_length=args.walk_length, alpha=0, rand=random.Random(args.seed)) model = Word2Vec(walks, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers) # Perform some evaluation of the model on the test dataset with open("./data/test_user_ratings.dat") as fin: fin.readline() groundtruth = [line.strip().split("\t")[:3] for line in fin] # (user, movie, rating) tr = [int(round(float(g[2]))) for g in groundtruth] pr = [ predict_rating(model, nodedict, "u" + g[0], "m" + g[1]) for g in groundtruth ] print("MSE = %f" % mean_squared_error(tr, pr)) print("accuracy = %f" % accuracy_score(tr, pr)) cm = confusion_matrix(tr, pr, labels=range(1, 6)) print(cm)
def process(args): # Create a graph from the training set nodedict = graph.records_to_graph() # Build the model using DeepWalk and Word2Vec G = graph.load_adjacencylist("out.adj", undirected=True) #################################################################################################################################################################### # Code Written for BI Project : Author : Himangshu Ranjan Borah(hborah) #################################################################################################################################################################### # call the build_deepwalk_corpus function # Take and populate the arguments from the command lines. generated_walks = graph.build_deepwalk_corpus(G = G, num_paths = args.number_walks, path_length = args.walk_length, alpha=0, rand=random.Random(0)) # Call word2vec to build the model. # print generated_walks # The structure Looks like ['32173', '32168'], ['124010', '22676'], ['17792', '72925'], model = Word2Vec(generated_walks, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers) #################################################################################################################################################################### # Code Written for BI Project : Author : Himangshu Ranjan Borah(hborah) #################################################################################################################################################################### # Perform some evaluation of the model on the test dataset with open("./data/test_user_ratings.dat") as fin: fin.next() groundtruth = [line.strip().split("\t")[:3] for line in fin] # (user, movie, rating) tr = [int(round(float(g[2]))) for g in groundtruth] pr = [predict_rating(model, nodedict, "u"+g[0], "m"+g[1]) for g in groundtruth] print "MSE = %f" % mean_squared_error(tr, pr) print "accuracy = %f" % accuracy_score(tr, pr) cm = confusion_matrix(tr, pr, labels=range(1,6)) print cm
def process(args): # Create a graph from the training set nodedict = graph.records_to_graph() # Build the model using DeepWalk and Word2Vec G = graph.load_adjacencylist("out.adj", undirected=True) walks = graph.build_deepwalk_corpus(G, int(args.number_walks), int(args.walk_length)) model = Word2Vec(walks, 100, 5, 5, 1) # Perform some evaluation of the model on the test dataset with open("./data/test_user_ratings.dat") as fin: fin.next() groundtruth = [line.strip().split("\t")[:3] for line in fin] # (user, movie, rating) tr = [int(round(float(g[2]))) for g in groundtruth] pr = [ predict_rating(model, nodedict, "u" + g[0], "m" + g[1]) for g in groundtruth ] print "MSE = %f" % mean_squared_error(tr, pr) print "accuracy = %f" % accuracy_score(tr, pr) cm = confusion_matrix(tr, pr, labels=range(1, 6)) print cm
def process(args): # Create a graph from the training set nodedict = graph.records_to_graph() # Build the model using DeepWalk and Word2Vec G = graph.load_adjacencylist("out.adj", undirected=True) # YOUR CODE HERE no_walks = int(args.number_walks) walk_len = int(args.walk_length)
def process(args): # Create a graph from the training set nodedict = graph.records_to_graph() # Build the model using DeepWalk and Word2Vec G = graph.load_adjacencylist("out.adj", undirected=True) #################################################################################################################################################################### # Code Written for BI Project : Author : Himangshu Ranjan Borah(hborah) #################################################################################################################################################################### # call the build_deepwalk_corpus function # Take and populate the arguments from the command lines. generated_walks = graph.build_deepwalk_corpus(G=G, num_paths=args.number_walks, path_length=args.walk_length, alpha=0, rand=random.Random(0)) # Call word2vec to build the model. # print generated_walks # The structure Looks like ['32173', '32168'], ['124010', '22676'], ['17792', '72925'], model = Word2Vec(generated_walks, size=args.representation_size, window=args.window_size, min_count=0, workers=args.workers) #################################################################################################################################################################### # Code Written for BI Project : Author : Himangshu Ranjan Borah(hborah) #################################################################################################################################################################### # Perform some evaluation of the model on the test dataset with open("./data/test_user_ratings.dat") as fin: fin.next() groundtruth = [line.strip().split("\t")[:3] for line in fin] # (user, movie, rating) tr = [int(round(float(g[2]))) for g in groundtruth] pr = [ predict_rating(model, nodedict, "u" + g[0], "m" + g[1]) for g in groundtruth ] print "MSE = %f" % mean_squared_error(tr, pr) print "accuracy = %f" % accuracy_score(tr, pr) cm = confusion_matrix(tr, pr, labels=range(1, 6)) print cm
def process(args): # Create a graph from the training set nodedict = graph.records_to_graph() # Build the model using DeepWalk and Word2Vec G = graph.load_adjacencylist("out.adj", undirected=True) # YOUR CODE HERE # Perform some evaluation of the model on the test dataset with open("./data/test_user_ratings.dat") as fin: fin.next() groundtruth = [line.strip().split("\t")[:3] for line in fin] # (user, movie, rating) tr = [int(round(float(g[2]))) for g in groundtruth] pr = [predict_rating(model, nodedict, "u"+g[0], "m"+g[1]) for g in groundtruth] print "MSE = %f" % mean_squared_error(tr, pr) print "accuracy = %f" % accuracy_score(tr, pr) cm = confusion_matrix(tr, pr, labels=range(1,6)) print cm