示例#1
0
    def _pixels_of_interest_to_array(self, point_tif):

        # =========== Jul 8, 2017
        # print 'point tif', point_tif

        point_arr = convert_raster_to_array(point_tif)

        try:
            if os.path.isfile(paths.mask):
                point_arr = apply_mask(paths.mask, point_arr)
        except TypeError:
            pass

        point_arr = apply_mask_pixel_tracker(paths.point_shape, point_arr)

        # print 'new point arr', point_arr
        # print 'new point arr shape', point_arr.shape

        return point_arr
示例#2
0
    def _pixels_of_interest_to_array(self, point_tif):

        # =========== Jul 8, 2017
        # print 'point tif', point_tif

        point_arr = convert_raster_to_array(point_tif)

        try:
            if os.path.isfile(paths.mask):
                point_arr = apply_mask(paths.mask, point_arr)
        except TypeError:
            pass

        point_arr = apply_mask_pixel_tracker(paths.point_shape, point_arr)

        # print 'new point arr', point_arr
        # print 'new point arr shape', point_arr.shape

        return point_arr
示例#3
0
def get_kcb(in_path, date_object):
    """
    Find NDVI image and convert to Kcb.

    :param in_path: NDVI input data path.
    :type in_path: str
    :param date_object: Datetime object of date.
    :return: numpy array object
    """
    # print date_object
    doy = date_object.timetuple().tm_yday
    year = date_object.year
    # print('date object', date_object)

    if year == 2000:
        band = 1
        raster = '{}_{}.tif'.format(year, doy)
    elif year == 2001:
        for num in NUMS:
            diff = doy - num
            if 0 <= diff <= 15:
                start = num
                if num == 353:
                    nd = num + 12
                else:
                    nd = num + 15

                band = diff + 1
                raster = '{}_{}_{}.tif'.format(year, start, nd)
                print('raster', raster)
                break
    else:
        for i, num in enumerate(NUMS):
            diff = doy - num
            if 0 <= diff <= 15:
                band = diff + 1
                raster = '{}_{}.tif'.format(year, i + 1)
                break

    ndvi = convert_raster_to_array(in_path, raster, band=band)

    return ndvi
示例#4
0
# =================================IMPORTS=======================================
from osgeo import gdal
from numpy import array, where, count_nonzero, ones, zeros
import os

from recharge.raster_tools import convert_raster_to_array
from recharge.raster_tools import get_raster_geo_attributes as get_geo

input_path = 'E:\\'
sand_tif = 'combo_pct_sand.tif'
clay_tif = 'combo_pct_clay.tif'
out_name = 'rew_22SEPT16.tif'

geo = get_geo(input_path)
sand = convert_raster_to_array(input_path, sand_tif)
clay = convert_raster_to_array(input_path, clay_tif)

#From ASCE pg 195, equations from Ritchie et al., 1989
rew = 8 + 0.08 * clay
rew = where(sand > 80.0, 20.0 - 0.15 * sand, rew)
rew = where(clay > 50, 11 - 0.06 * clay, rew)


driver = gdal.GetDriverByName('GTiff')
out_data_set = driver.Create(os.path.join(input_path, out_name), geo['cols'], geo['rows'],
                             geo['bands'], geo['data_type'])
out_data_set.SetGeoTransform(geo['geotransform'])
out_data_set.SetProjection(geo['projection'])
output_band = out_data_set.GetRasterBand(1)
output_band.WriteArray(rew, 0, 0)
示例#5
0
# you may not use this file except in compliance
# with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================

# =================================IMPORTS=======================================

from osgeo import gdal
from numpy import array, where, count_nonzero, ones, zeros
import os

from recharge.raster_tools import convert_raster_to_array
from recharge.raster_tools import get_raster_geo_attributes as get_geo

input_path = 'C:\Users\David\Documents\Recharge\Thesis\Figures\maps'
sand_tif = 'total_precip_2000_2013_11OCT16.tif'

geo = get_geo(input_path)
ppt = convert_raster_to_array(input_path, sand_tif)

print 'mean precip = {}'.format(ppt.mean())
# ==========================  EOF  ==============================================
示例#6
0
EXu 13 SEP 2017
"""

from recharge.raster_tools import convert_raster_to_array
import numpy as np
#Locations for Walnut Gulch
input_path = 'G:\\Walnut\\WalnutSoilProperties\\'
sand_tif = 'Merged_percSand.tif'
clay_tif = 'Merged_percClay.tif'
silt_tif = 'Merged_percSilt.tif'
BD_w_tif = 'Merged_gcmBD3rdbar.tif'
Ksat_tif = 'Merged_umsKsat.tif'
OM_tif = 'Merged_OrgMatter.tif'
WC_tif = 'Merged_WC3rdbar.tif'

sand = convert_raster_to_array(input_path, sand_tif)
clay = convert_raster_to_array(input_path, clay_tif)
silt_e = convert_raster_to_array(input_path, silt_tif)
#elev = convert_raster_to_array(input_path, elev_tif)
BD_w = convert_raster_to_array(input_path, BD_w_tif)  #wet bulk density
Ksat = convert_raster_to_array(input_path, Ksat_tif)  #extracted
OM = convert_raster_to_array(input_path, OM_tif)
WC = convert_raster_to_array(input_path, WC_tif)

sand_1d = sand.flatten()
clay_1d = clay.flatten()
silt_e_1d = silt_e.flatten()
silt_s_1d = np.subtract(100, clay_1d + sand_1d)
#elev_1d = elev.flatten()
BD_w_1d = BD_w.flatten()
Ksat_1d = Ksat.flatten()
示例#7
0
"""


from recharge.raster_tools import convert_raster_to_array
import numpy as np
#Locations for Walnut Gulch
input_path = 'G:\\Walnut\\WalnutSoilProperties\\'
sand_tif = 'Merged_percSand.tif'
clay_tif = 'Merged_percClay.tif'
silt_tif = 'Merged_percSilt.tif'
BD_w_tif = 'Merged_gcmBD3rdbar.tif'
Ksat_tif = 'Merged_umsKsat.tif'
OM_tif = 'Merged_OrgMatter.tif'
WC_tif = 'Merged_WC3rdbar.tif'

sand = convert_raster_to_array(input_path, sand_tif)
clay = convert_raster_to_array(input_path, clay_tif)
silt_e = convert_raster_to_array(input_path, silt_tif)
#elev = convert_raster_to_array(input_path, elev_tif)
BD_w = convert_raster_to_array(input_path, BD_w_tif)#wet bulk density
Ksat = convert_raster_to_array(input_path, Ksat_tif)#extracted
OM = convert_raster_to_array(input_path, OM_tif)
WC = convert_raster_to_array(input_path, WC_tif)

sand_1d = sand.flatten()
clay_1d = clay.flatten()
silt_e_1d = silt_e.flatten()
silt_s_1d = np.subtract(100,clay_1d+sand_1d)
#elev_1d = elev.flatten()
BD_w_1d = BD_w.flatten()
Ksat_1d = Ksat.flatten()
示例#8
0
from recharge.raster_tools import get_raster_geo_attributes
input_folder = 'G:\\ETRM_inputs_Walnut\\NDVI\\NDVI_Real\\'
files = os.listdir(input_folder)
root = "G:\\ETRM_inputs_Walnut\\PM_RAD\\PM2000\\"
for it in files:
    in_folder = input_folder+it+"\\"
    os.chdir(in_folder)
    for raster in find_format(in_folder, '*.tif'):
        FOLDER,r_name = os.path.split(raster)
        tiff = r_name
        temp = "temp.tif"
        cut = 'gdalwarp -overwrite -s_srs EPSG:{a} -t_srs EPSG:{a} -te {b} {c} {d} {e} -ts {f} {g}\n' \
         ' -r {h}  -multi {j} {k}'.format(a=projection, b=x_min_n, c=y_min_n, d=x_max, e=y_max, f=cols_n, g=rows_n,
                                       h=resample_method, j=tiff, k=temp)
        call(cut)
        ndvi = convert_raster_to_array(in_folder, temp)
        arr = ndvi*0.0001

        geo = get_raster_geo_attributes(root)
        output_path = in_folder+tiff

        convert_array_to_raster(output_path, arr, geo, output_band=1)

###=========================
#Prism


#=============================================
#Walnut
import os, fnmatch
from subprocess import call
示例#9
0
# =================================IMPORTS=======================================
from osgeo import gdal
from numpy import array, where, count_nonzero, ones, zeros
import os

from recharge.raster_tools import convert_raster_to_array
from recharge.raster_tools import get_raster_geo_attributes as get_geo

input_path = 'E:\\'
sand_tif = 'combo_pct_sand.tif'
clay_tif = 'combo_pct_clay.tif'
out_name = 'rew_22SEPT16.tif'

geo = get_geo(input_path)
sand = convert_raster_to_array(input_path, sand_tif)
clay = convert_raster_to_array(input_path, clay_tif)

#From ASCE pg 195, equations from Ritchie et al., 1989
rew = 8 + 0.08 * clay
rew = where(sand > 80.0, 20.0 - 0.15 * sand, rew)
rew = where(clay > 50, 11 - 0.06 * clay, rew)

driver = gdal.GetDriverByName('GTiff')
out_data_set = driver.Create(os.path.join(input_path, out_name), geo['cols'],
                             geo['rows'], geo['bands'], geo['data_type'])
out_data_set.SetGeoTransform(geo['geotransform'])
out_data_set.SetProjection(geo['projection'])
output_band = out_data_set.GetRasterBand(1)
output_band.WriteArray(rew, 0, 0)