def test_add_demographic_characteristics_RaceEthnicity(self):
        characteristics = {}

        person = StatePerson.new_with_defaults(
            person_id=12345,
            birthdate=date(1984, 8, 31),
            gender=Gender.FEMALE,
            races=[StatePersonRace.new_with_defaults(race=Race.ASIAN)],
            ethnicities=[
                StatePersonEthnicity.new_with_defaults(
                    ethnicity=Ethnicity.HISPANIC)
            ])

        event_date = date(2010, 9, 1)

        updated_characteristics = add_demographic_characteristics(
            characteristics, person, event_date)

        expected_output = {
            'age_bucket': '25-29',
            'race': [Race.ASIAN],
            'gender': Gender.FEMALE,
            'ethnicity': [Ethnicity.HISPANIC]
        }

        self.assertEqual(updated_characteristics, expected_output)
示例#2
0
def characteristics_dict(person: StatePerson,
                         program_event: ProgramEvent) -> Dict[str, Any]:
    """Builds a dictionary that describes the characteristics of the person and event.

    Args:
        person: the StatePerson we are picking characteristics from
        program_event: the ProgramEvent we are picking characteristics from

    Returns:
        A dictionary populated with all relevant characteristics.
    """
    characteristics: Dict[str, Any] = {}

    event_date = program_event.event_date

    if isinstance(program_event, ProgramReferralEvent):
        if program_event.supervision_type:
            characteristics['supervision_type'] = program_event.supervision_type
        if program_event.assessment_score and program_event.assessment_type:
            assessment_bucket = assessment_score_bucket(
                assessment_score=program_event.assessment_score,
                assessment_level=None,
                assessment_type=program_event.assessment_type)

            if assessment_bucket and include_assessment_in_metric(
                    'program', program_event.state_code, program_event.assessment_type):
                characteristics['assessment_score_bucket'] = assessment_bucket
                characteristics['assessment_type'] = program_event.assessment_type

        if program_event.participation_status:
            characteristics['participation_status'] = program_event.participation_status
        if program_event.supervising_officer_external_id:
            characteristics['supervising_officer_external_id'] = program_event.supervising_officer_external_id
        if program_event.supervising_district_external_id:
            characteristics['supervising_district_external_id'] = program_event.supervising_district_external_id
    elif isinstance(program_event, ProgramParticipationEvent):
        characteristics['date_of_participation'] = event_date

        if program_event.supervision_type:
            characteristics['supervision_type'] = program_event.supervision_type
        if program_event.program_location_id:
            characteristics['program_location_id'] = program_event.program_location_id

    if program_event.program_id:
        characteristics['program_id'] = program_event.program_id

    characteristics = add_demographic_characteristics(characteristics, person, event_date)

    characteristics_with_person_details = characteristics_with_person_id_fields(
        characteristics, program_event.state_code, person, 'program')

    return characteristics_with_person_details
    def test_add_demographic_characteristics_NoAttributes(self):
        characteristics = {}

        person = StatePerson.new_with_defaults(person_id=12345)

        event_date = date(2010, 9, 1)

        updated_characteristics = add_demographic_characteristics(
            characteristics, person, event_date)

        expected_output = {}

        self.assertEqual(updated_characteristics, expected_output)
示例#4
0
def characteristics_dict(
        person: StatePerson, event: ReleaseEvent,
        metric_type: ReincarcerationRecidivismMetricType) -> Dict[str, Any]:
    """Builds a dictionary that describes the characteristics of the person and the release event.

    Release cohort, follow-up period, and methodology are not included in the output here. They are added into
    augmented versions of these combinations later.

    Args:
        person: the StatePerson we are picking characteristics from
        event: the ReleaseEvent we are picking characteristics from
        metric_type: The ReincarcerationRecidivismMetricType provided determines which fields should be added to the
            characteristics dictionary
    Returns:
        A dictionary populated with all relevant characteristics.
    """
    characteristics: Dict[str, Any] = {}

    if event.county_of_residence:
        characteristics['county_of_residence'] = event.county_of_residence

    if event.release_facility is not None:
        characteristics['release_facility'] = event.release_facility

    event_stay_length = stay_length_from_event(event)
    event_stay_length_bucket = stay_length_bucket(event_stay_length)
    characteristics['stay_length_bucket'] = event_stay_length_bucket

    characteristics = add_demographic_characteristics(
        characteristics, person, event.original_admission_date)

    if isinstance(
            event, RecidivismReleaseEvent
    ) and metric_type == ReincarcerationRecidivismMetricType.COUNT:
        time_at_liberty = days_at_liberty(event)

        characteristics['days_at_liberty'] = time_at_liberty

    characteristics = characteristics_with_person_id_fields(
        characteristics, event.state_code, person, 'recidivism')

    return characteristics
    def test_add_demographic_characteristics_MultipleRaces(self):
        characteristics = {}

        person = StatePerson.new_with_defaults(
            person_id=12345,
            birthdate=date(1984, 8, 31),
            gender=Gender.FEMALE,
            races=[
                StatePersonRace.new_with_defaults(race=Race.ASIAN),
                StatePersonRace.new_with_defaults(race=Race.BLACK)
            ])

        event_date = date(2010, 9, 1)

        updated_characteristics = add_demographic_characteristics(
            characteristics, person, event_date)

        expected_output = {
            'age_bucket': '25-29',
            'race': [Race.ASIAN, Race.BLACK],
            'gender': Gender.FEMALE
        }

        self.assertEqual(updated_characteristics, expected_output)
示例#6
0
def characteristics_dict(person: StatePerson,
                         supervision_time_bucket: SupervisionTimeBucket,
                         metric_type: SupervisionMetricType) -> Dict[str, Any]:
    """Builds a dictionary that describes the characteristics of the person and supervision_time_bucket.

    Args:
        person: the StatePerson we are picking characteristics from
        supervision_time_bucket: the SupervisionTimeBucket we are picking characteristics from
        metric_type: The SupervisionMetricType provided determines which fields should be added to the characteristics
            dictionary

    Returns:
        A dictionary populated with all relevant characteristics.
    """
    characteristics: Dict[str, Any] = {}

    include_revocation_dimensions = _include_revocation_dimensions_for_metric(
        metric_type)
    include_assessment_dimensions = _include_assessment_dimensions_for_metric(
        metric_type)
    include_demographic_dimensions = _include_demographic_dimensions_for_metric(
        metric_type)
    include_person_level_dimensions = _include_person_level_dimensions_for_metric(
        metric_type)

    if (metric_type == SupervisionMetricType.POPULATION
            and isinstance(supervision_time_bucket,
                           (RevocationReturnSupervisionTimeBucket,
                            NonRevocationReturnSupervisionTimeBucket))):
        if supervision_time_bucket.most_severe_violation_type:
            characteristics[
                'most_severe_violation_type'] = supervision_time_bucket.most_severe_violation_type
        if supervision_time_bucket.most_severe_violation_type_subtype:
            characteristics['most_severe_violation_type_subtype'] = \
                supervision_time_bucket.most_severe_violation_type_subtype
        if supervision_time_bucket.response_count is not None:
            characteristics[
                'response_count'] = supervision_time_bucket.response_count

    if include_revocation_dimensions and \
            isinstance(supervision_time_bucket,
                       RevocationReturnSupervisionTimeBucket):
        if supervision_time_bucket.revocation_type:
            characteristics[
                'revocation_type'] = supervision_time_bucket.revocation_type

        if supervision_time_bucket.source_violation_type:
            characteristics[
                'source_violation_type'] = supervision_time_bucket.source_violation_type

        if metric_type in [
                SupervisionMetricType.REVOCATION_ANALYSIS,
                SupervisionMetricType.REVOCATION_VIOLATION_TYPE_ANALYSIS
        ]:
            if supervision_time_bucket.most_severe_violation_type:
                characteristics[
                    'most_severe_violation_type'] = supervision_time_bucket.most_severe_violation_type

            if supervision_time_bucket.most_severe_violation_type_subtype:
                characteristics['most_severe_violation_type_subtype'] = \
                    supervision_time_bucket.most_severe_violation_type_subtype

            if metric_type in [SupervisionMetricType.REVOCATION_ANALYSIS]:
                if supervision_time_bucket.most_severe_response_decision:
                    characteristics['most_severe_response_decision'] = \
                        supervision_time_bucket.most_severe_response_decision

            if supervision_time_bucket.response_count is not None:
                characteristics[
                    'response_count'] = supervision_time_bucket.response_count

    if isinstance(supervision_time_bucket, SupervisionTerminationBucket):
        if supervision_time_bucket.termination_reason:
            characteristics[
                'termination_reason'] = supervision_time_bucket.termination_reason

    if supervision_time_bucket.supervision_type:
        characteristics[
            'supervision_type'] = supervision_time_bucket.supervision_type
    if supervision_time_bucket.case_type:
        characteristics['case_type'] = supervision_time_bucket.case_type

    if not include_revocation_dimensions and supervision_time_bucket.supervision_level:
        characteristics[
            'supervision_level'] = supervision_time_bucket.supervision_level

    if include_assessment_dimensions:
        # TODO(2853): Figure out more robust solution for not assessed people. Here we don't set assessment_type when
        #  someone is not assessed. This only works as desired because BQ doesn't rely on assessment_type at all.
        characteristics['assessment_score_bucket'] = 'NOT_ASSESSED'
        if supervision_time_bucket.assessment_score and supervision_time_bucket.assessment_type:
            assessment_bucket = assessment_score_bucket(
                supervision_time_bucket.assessment_score,
                supervision_time_bucket.assessment_level,
                supervision_time_bucket.assessment_type)

            if assessment_bucket and include_assessment_in_metric(
                    'supervision', supervision_time_bucket.state_code,
                    supervision_time_bucket.assessment_type):
                characteristics['assessment_score_bucket'] = assessment_bucket
                characteristics[
                    'assessment_type'] = supervision_time_bucket.assessment_type
    if supervision_time_bucket.supervising_officer_external_id:
        characteristics[
            'supervising_officer_external_id'] = supervision_time_bucket.supervising_officer_external_id

    if supervision_time_bucket.supervising_district_external_id:
        characteristics[
            'supervising_district_external_id'] = supervision_time_bucket.supervising_district_external_id

    if isinstance(supervision_time_bucket,
                  RevocationReturnSupervisionTimeBucket):
        event_date = supervision_time_bucket.revocation_admission_date
    elif isinstance(supervision_time_bucket, SupervisionTerminationBucket):
        event_date = supervision_time_bucket.termination_date
    else:
        year = supervision_time_bucket.year
        month = supervision_time_bucket.month

        event_date = date(year, month, 1)

    if include_demographic_dimensions:
        characteristics = add_demographic_characteristics(
            characteristics, person, event_date)

    if include_person_level_dimensions:
        characteristics = characteristics_with_person_id_fields(
            characteristics, person, 'supervision')

        if not include_revocation_dimensions and supervision_time_bucket.supervision_level_raw_text:
            characteristics['supervision_level_raw_text'] = \
                supervision_time_bucket.supervision_level_raw_text

        if metric_type == SupervisionMetricType.POPULATION:
            if isinstance(supervision_time_bucket,
                          (RevocationReturnSupervisionTimeBucket,
                           NonRevocationReturnSupervisionTimeBucket)):
                characteristics['is_on_supervision_last_day_of_month'] = \
                    supervision_time_bucket.is_on_supervision_last_day_of_month

        if metric_type == SupervisionMetricType.REVOCATION_ANALYSIS:
            if isinstance(supervision_time_bucket, RevocationReturnSupervisionTimeBucket) \
                    and supervision_time_bucket.violation_history_description:
                characteristics['violation_history_description'] = \
                    supervision_time_bucket.violation_history_description

        if include_revocation_dimensions and isinstance(
                supervision_time_bucket,
                RevocationReturnSupervisionTimeBucket):
            characteristics['revocation_admission_date'] = \
                supervision_time_bucket.revocation_admission_date

        if metric_type == SupervisionMetricType.ASSESSMENT_CHANGE:
            if isinstance(supervision_time_bucket, SupervisionTerminationBucket) \
                    and supervision_time_bucket.termination_date:
                characteristics[
                    'termination_date'] = supervision_time_bucket.termination_date

    return characteristics
示例#7
0
def characteristics_dict(
        person: StatePerson,
        incarceration_event: IncarcerationEvent) -> Dict[str, Any]:
    """Builds a dictionary that describes the characteristics of the person and event.

    Args:
        person: the StatePerson we are picking characteristics from
        incarceration_event: the IncarcerationEvent we are picking characteristics from

    Returns:
        A dictionary populated with all relevant characteristics.
    """
    characteristics: Dict[str, Any] = {}

    # Add characteristics that will be used to generate dictionaries with unique combinations.
    if isinstance(incarceration_event, IncarcerationAdmissionEvent):
        characteristics['admission_date'] = incarceration_event.event_date

        if incarceration_event.admission_reason:
            characteristics[
                'admission_reason'] = incarceration_event.admission_reason
        if incarceration_event.supervision_type_at_admission:
            characteristics[
                'supervision_type_at_admission'] = incarceration_event.supervision_type_at_admission
        # TODO(3275): Rename to purpose_for_incarceration
        if incarceration_event.specialized_purpose_for_incarceration:
            characteristics['specialized_purpose_for_incarceration'] = \
                incarceration_event.specialized_purpose_for_incarceration

    if isinstance(incarceration_event, IncarcerationReleaseEvent):
        characteristics['release_date'] = incarceration_event.event_date

        if incarceration_event.release_reason:
            characteristics[
                'release_reason'] = incarceration_event.release_reason
        if incarceration_event.release_reason_raw_text:
            characteristics[
                'release_reason_raw_text'] = incarceration_event.release_reason_raw_text
        if incarceration_event.purpose_for_incarceration:
            characteristics[
                'purpose_for_incarceration'] = incarceration_event.purpose_for_incarceration
        if incarceration_event.supervision_type_at_release:
            characteristics[
                'supervision_type_at_release'] = incarceration_event.supervision_type_at_release
        if incarceration_event.admission_reason:
            characteristics[
                'admission_reason'] = incarceration_event.admission_reason
        # Have to explicitly check if this is not None because 0 is a valid value and evaluates to False
        if incarceration_event.total_days_incarcerated is not None:
            characteristics[
                'total_days_incarcerated'] = incarceration_event.total_days_incarcerated

    if isinstance(incarceration_event, IncarcerationStayEvent):
        characteristics['date_of_stay'] = incarceration_event.event_date

        if incarceration_event.admission_reason:
            characteristics[
                'admission_reason'] = incarceration_event.admission_reason
        if incarceration_event.supervision_type_at_admission:
            characteristics[
                'supervision_type_at_admission'] = incarceration_event.supervision_type_at_admission
        if incarceration_event.judicial_district_code:
            characteristics[
                'judicial_district_code'] = incarceration_event.judicial_district_code

    # Always include facility as a dimension
    if incarceration_event.facility:
        characteristics['facility'] = incarceration_event.facility

    # Always include county_of_residence as a dimension
    if incarceration_event.county_of_residence:
        characteristics[
            'county_of_residence'] = incarceration_event.county_of_residence

    event_date = incarceration_event.event_date

    characteristics = add_demographic_characteristics(characteristics, person,
                                                      event_date)

    characteristics_with_person_details = add_person_level_characteristics(
        person, incarceration_event, characteristics)

    return characteristics_with_person_details