示例#1
0
    def run_test_pipeline(
            self,
            dataset: str,
            fake_supervision_period_id: int,
            unifying_id_field_filter_set: Optional[Set[int]] = None,
            metric_types_filter: Optional[Set[str]] = None):
        """Runs a test version of the program pipeline."""
        test_pipeline = TestPipeline()

        # Get StatePersons
        persons = (
            test_pipeline
            | 'Load Persons' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StatePerson,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=True))

        # Get StateProgramAssignments
        program_assignments = (
            test_pipeline
            | 'Load Program Assignments' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StateProgramAssignment,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=True,
                unifying_id_field_filter_set=unifying_id_field_filter_set))

        # Get StateAssessments
        assessments = (
            test_pipeline
            | 'Load Assessments' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StateAssessment,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=False,
                unifying_id_field_filter_set=unifying_id_field_filter_set))

        # Get StateSupervisionPeriods
        supervision_periods = (
            test_pipeline
            | 'Load SupervisionPeriods' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StateSupervisionPeriod,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=False,
                unifying_id_field_filter_set=unifying_id_field_filter_set))

        supervision_period_to_agent_map = {
            'agent_id': 1010,
            'agent_external_id': 'OFFICER0009',
            'district_external_id': '10',
            'supervision_period_id': fake_supervision_period_id
        }

        supervision_period_to_agent_associations = (
            test_pipeline
            | 'Create SupervisionPeriod to Agent table' >> beam.Create(
                [supervision_period_to_agent_map]))

        supervision_period_to_agent_associations_as_kv = (
            supervision_period_to_agent_associations
            | 'Convert SupervisionPeriod to Agent table to KV tuples' >>
            beam.ParDo(pipeline.ConvertDictToKVTuple(),
                       'supervision_period_id'))

        # Group each StatePerson with their other entities
        persons_entities = ({
            'person': persons,
            'program_assignments': program_assignments,
            'assessments': assessments,
            'supervision_periods': supervision_periods
        }
                            |
                            'Group StatePerson to StateProgramAssignments and'
                            >> beam.CoGroupByKey())

        # Identify ProgramEvents from the StatePerson's
        # StateProgramAssignments
        person_program_events = (
            persons_entities
            | beam.ParDo(
                pipeline.ClassifyProgramAssignments(),
                AsDict(supervision_period_to_agent_associations_as_kv)))

        # Get pipeline job details for accessing job_id
        all_pipeline_options = PipelineOptions().get_all_options()

        # Add timestamp for local jobs
        job_timestamp = datetime.datetime.now().strftime(
            '%Y-%m-%d_%H_%M_%S.%f')
        all_pipeline_options['job_timestamp'] = job_timestamp

        metric_types = metric_types_filter if metric_types_filter else {'ALL'}

        # Get program metrics
        program_metrics = (
            person_program_events
            | 'Get Program Metrics' >>  # type: ignore
            pipeline.GetProgramMetrics(pipeline_options=all_pipeline_options,
                                       metric_types=metric_types,
                                       calculation_end_month=None,
                                       calculation_month_count=-1))

        assert_that(program_metrics, AssertMatchers.validate_pipeline_test())

        test_pipeline.run()
示例#2
0
    def testIncarcerationPipeline(self):
        fake_person_id = 12345

        fake_person = schema.StatePerson(
            person_id=fake_person_id,
            gender=Gender.MALE,
            birthdate=date(1970, 1, 1),
            residency_status=ResidencyStatus.PERMANENT)

        persons_data = [normalized_database_base_dict(fake_person)]

        race_1 = schema.StatePersonRace(person_race_id=111,
                                        state_code='CA',
                                        race=Race.BLACK,
                                        person_id=fake_person_id)

        race_2 = schema.StatePersonRace(person_race_id=111,
                                        state_code='ND',
                                        race=Race.WHITE,
                                        person_id=fake_person_id)

        races_data = normalized_database_base_dict_list([race_1, race_2])

        ethnicity = schema.StatePersonEthnicity(person_ethnicity_id=111,
                                                state_code='CA',
                                                ethnicity=Ethnicity.HISPANIC,
                                                person_id=fake_person_id)

        ethnicity_data = normalized_database_base_dict_list([ethnicity])

        sentence_group = schema.StateSentenceGroup(sentence_group_id=111,
                                                   person_id=fake_person_id)

        initial_incarceration = schema.StateIncarcerationPeriod(
            incarceration_period_id=1111,
            status=StateIncarcerationPeriodStatus.NOT_IN_CUSTODY,
            state_code='CA',
            county_code='124',
            facility='San Quentin',
            facility_security_level=StateIncarcerationFacilitySecurityLevel.
            MAXIMUM,
            admission_reason=StateIncarcerationPeriodAdmissionReason.
            NEW_ADMISSION,
            projected_release_reason=StateIncarcerationPeriodReleaseReason.
            CONDITIONAL_RELEASE,
            admission_date=date(2008, 11, 20),
            release_date=date(2010, 12, 4),
            release_reason=StateIncarcerationPeriodReleaseReason.
            SENTENCE_SERVED,
            person_id=fake_person_id,
        )

        first_reincarceration = schema.StateIncarcerationPeriod(
            incarceration_period_id=2222,
            status=StateIncarcerationPeriodStatus.NOT_IN_CUSTODY,
            state_code='CA',
            county_code='124',
            facility='San Quentin',
            facility_security_level=StateIncarcerationFacilitySecurityLevel.
            MAXIMUM,
            admission_reason=StateIncarcerationPeriodAdmissionReason.
            NEW_ADMISSION,
            projected_release_reason=StateIncarcerationPeriodReleaseReason.
            CONDITIONAL_RELEASE,
            admission_date=date(2011, 4, 5),
            release_date=date(2014, 4, 14),
            release_reason=StateIncarcerationPeriodReleaseReason.
            SENTENCE_SERVED,
            person_id=fake_person_id)

        subsequent_reincarceration = schema.StateIncarcerationPeriod(
            incarceration_period_id=3333,
            status=StateIncarcerationPeriodStatus.IN_CUSTODY,
            state_code='CA',
            county_code='124',
            facility='San Quentin',
            facility_security_level=StateIncarcerationFacilitySecurityLevel.
            MAXIMUM,
            admission_reason=StateIncarcerationPeriodAdmissionReason.
            NEW_ADMISSION,
            projected_release_reason=StateIncarcerationPeriodReleaseReason.
            CONDITIONAL_RELEASE,
            admission_date=date(2017, 1, 4),
            person_id=fake_person_id)

        incarceration_sentence = schema.StateIncarcerationSentence(
            incarceration_sentence_id=1111,
            sentence_group_id=sentence_group.sentence_group_id,
            incarceration_periods=[
                initial_incarceration, first_reincarceration,
                subsequent_reincarceration
            ],
            person_id=fake_person_id)

        supervision_sentence = schema.StateSupervisionSentence(
            supervision_sentence_id=123, person_id=fake_person_id)

        sentence_group.incarceration_sentences = [incarceration_sentence]

        sentence_group_data = [normalized_database_base_dict(sentence_group)]

        incarceration_sentence_data = [
            normalized_database_base_dict(incarceration_sentence)
        ]

        supervision_sentence_data = [
            normalized_database_base_dict(supervision_sentence)
        ]

        incarceration_periods_data = [
            normalized_database_base_dict(initial_incarceration),
            normalized_database_base_dict(first_reincarceration),
            normalized_database_base_dict(subsequent_reincarceration)
        ]

        state_incarceration_sentence_incarceration_period_association = [
            {
                'incarceration_period_id':
                initial_incarceration.incarceration_period_id,
                'incarceration_sentence_id':
                incarceration_sentence.incarceration_sentence_id,
            },
            {
                'incarceration_period_id':
                first_reincarceration.incarceration_period_id,
                'incarceration_sentence_id':
                incarceration_sentence.incarceration_sentence_id,
            },
            {
                'incarceration_period_id':
                subsequent_reincarceration.incarceration_period_id,
                'incarceration_sentence_id':
                incarceration_sentence.incarceration_sentence_id,
            },
        ]

        data_dict = {
            schema.StatePerson.__tablename__:
            persons_data,
            schema.StatePersonRace.__tablename__:
            races_data,
            schema.StatePersonEthnicity.__tablename__:
            ethnicity_data,
            schema.StateSentenceGroup.__tablename__:
            sentence_group_data,
            schema.StateIncarcerationSentence.__tablename__:
            incarceration_sentence_data,
            schema.StateSupervisionSentence.__tablename__:
            supervision_sentence_data,
            schema.StateIncarcerationPeriod.__tablename__:
            incarceration_periods_data,
            schema.state_incarceration_sentence_incarceration_period_association_table.name:
            state_incarceration_sentence_incarceration_period_association,
            schema.state_supervision_sentence_incarceration_period_association_table.name:
            [{}]
        }

        test_pipeline = TestPipeline()

        # Get StatePersons
        persons = (test_pipeline
                   | 'Load Persons' >> extractor_utils.BuildRootEntity(
                       dataset=None,
                       data_dict=data_dict,
                       root_schema_class=schema.StatePerson,
                       root_entity_class=entities.StatePerson,
                       unifying_id_field='person_id',
                       build_related_entities=True))

        # Get StateSentenceGroups
        sentence_groups = (
            test_pipeline
            | 'Load StateSentencegroups' >> extractor_utils.BuildRootEntity(
                dataset=None,
                data_dict=data_dict,
                root_schema_class=schema.StateSentenceGroup,
                root_entity_class=entities.StateSentenceGroup,
                unifying_id_field='person_id',
                build_related_entities=True))

        # Get StateIncarcerationSentences
        incarceration_sentences = (
            test_pipeline | 'Load StateIncarcerationSentences' >>
            extractor_utils.BuildRootEntity(
                dataset=None,
                data_dict=data_dict,
                root_schema_class=schema.StateIncarcerationSentence,
                root_entity_class=entities.StateIncarcerationSentence,
                unifying_id_field='person_id',
                build_related_entities=True))

        # Get StateSupervisionSentences
        supervision_sentences = (
            test_pipeline | 'Load StateSupervisionSentences' >>
            extractor_utils.BuildRootEntity(
                dataset=None,
                data_dict=data_dict,
                root_schema_class=schema.StateSupervisionSentence,
                root_entity_class=entities.StateSupervisionSentence,
                unifying_id_field='person_id',
                build_related_entities=True))

        sentences_and_sentence_groups = (
            {
                'sentence_groups': sentence_groups,
                'incarceration_sentences': incarceration_sentences,
                'supervision_sentences': supervision_sentences
            }
            | 'Group sentences to sentence groups' >> beam.CoGroupByKey())

        sentence_groups_with_hydrated_sentences = (
            sentences_and_sentence_groups
            | 'Set hydrated sentences on sentence groups' >> beam.ParDo(
                SetSentencesOnSentenceGroup()))

        # Group each StatePerson with their related entities
        person_and_sentence_groups = (
            {
                'person': persons,
                'sentence_groups': sentence_groups_with_hydrated_sentences
            }
            | 'Group StatePerson to SentenceGroups' >> beam.CoGroupByKey())

        # Identify IncarcerationEvents events from the StatePerson's
        # StateIncarcerationPeriods
        fake_person_id_to_county_query_result = [{
            'person_id':
            fake_person_id,
            'county_of_residence':
            _COUNTY_OF_RESIDENCE
        }]
        person_id_to_county_kv = (
            test_pipeline
            | "Read person id to county associations from BigQuery" >>
            beam.Create(fake_person_id_to_county_query_result)
            |
            "Convert to KV" >> beam.ParDo(ConvertDictToKVTuple(), 'person_id'))

        person_events = (person_and_sentence_groups
                         | 'Classify Incarceration Events' >> beam.ParDo(
                             pipeline.ClassifyIncarcerationEvents(),
                             AsDict(person_id_to_county_kv)))

        # Get pipeline job details for accessing job_id
        all_pipeline_options = PipelineOptions().get_all_options()

        # Add timestamp for local jobs
        job_timestamp = datetime.datetime.now().strftime(
            '%Y-%m-%d_%H_%M_%S.%f')
        all_pipeline_options['job_timestamp'] = job_timestamp

        # Get IncarcerationMetrics
        incarceration_metrics = (
            person_events
            | 'Get Incarceration Metrics' >> pipeline.GetIncarcerationMetrics(
                pipeline_options=all_pipeline_options,
                inclusions=ALL_INCLUSIONS_DICT,
                calculation_month_limit=-1))

        assert_that(incarceration_metrics,
                    AssertMatchers.validate_metric_type())

        test_pipeline.run()
示例#3
0
    def run_test_pipeline(
            fake_person_id: int,
            state_code: str,
            dataset: str,
            expected_metric_types: Set[IncarcerationMetricType],
            allow_empty: bool = False,
            unifying_id_field_filter_set: Optional[Set[int]] = None,
            metric_types_filter: Optional[Set[str]] = None):
        """Runs a test version of the incarceration pipeline."""
        test_pipeline = TestPipeline()

        # Get StatePersons
        persons = (
            test_pipeline
            | 'Load Persons' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StatePerson,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=True))

        # Get StateSentenceGroups
        sentence_groups = (
            test_pipeline
            | 'Load StateSentenceGroups' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StateSentenceGroup,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=True,
                unifying_id_field_filter_set=unifying_id_field_filter_set))

        # Get StateIncarcerationSentences
        incarceration_sentences = (
            test_pipeline
            | 'Load StateIncarcerationSentences' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StateIncarcerationSentence,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=True,
                unifying_id_field_filter_set=unifying_id_field_filter_set))

        # Get StateSupervisionSentences
        supervision_sentences = (
            test_pipeline | 'Load StateSupervisionSentences' >>  # type: ignore
            extractor_utils.BuildRootEntity(
                dataset=dataset,
                root_entity_class=entities.StateSupervisionSentence,
                unifying_id_field=entities.StatePerson.get_class_id_name(),
                build_related_entities=True,
                unifying_id_field_filter_set=unifying_id_field_filter_set))

        us_mo_sentence_status_rows: List[Dict[str, Any]] = [{
            'person_id':
            fake_person_id,
            'sentence_external_id':
            'XXX',
            'sentence_status_external_id':
            'YYY',
            'status_code':
            'ZZZ',
            'status_date':
            'not_a_date',
            'status_description':
            'XYZ'
        }]

        us_mo_sentence_statuses = (test_pipeline
                                   | 'Create MO sentence statuses' >>
                                   beam.Create(us_mo_sentence_status_rows))

        us_mo_sentence_status_rankings_as_kv = (
            us_mo_sentence_statuses
            | 'Convert sentence status ranking table to KV tuples' >>
            beam.ParDo(ConvertDictToKVTuple(), 'person_id'))

        sentences_and_statuses = (
            {
                'incarceration_sentences': incarceration_sentences,
                'supervision_sentences': supervision_sentences,
                'sentence_statuses': us_mo_sentence_status_rankings_as_kv
            }
            | 'Group sentences to the sentence statuses for that person' >>
            beam.CoGroupByKey())

        sentences_converted = (
            sentences_and_statuses
            | 'Convert to state-specific sentences' >> beam.ParDo(
                ConvertSentencesToStateSpecificType()).with_outputs(
                    'incarceration_sentences', 'supervision_sentences'))

        sentences_and_sentence_groups = (
            {
                'sentence_groups': sentence_groups,
                'incarceration_sentences':
                sentences_converted.incarceration_sentences,
                'supervision_sentences':
                sentences_converted.supervision_sentences
            }
            | 'Group sentences to sentence groups' >> beam.CoGroupByKey())

        sentence_groups_with_hydrated_sentences = (
            sentences_and_sentence_groups
            | 'Set hydrated sentences on sentence groups' >> beam.ParDo(
                SetSentencesOnSentenceGroup()))

        # Identify IncarcerationEvents events from the StatePerson's
        # StateIncarcerationPeriods
        fake_person_id_to_county_query_result = [{
            'person_id':
            fake_person_id,
            'county_of_residence':
            _COUNTY_OF_RESIDENCE
        }]
        person_id_to_county_kv = (
            test_pipeline
            | "Read person id to county associations from BigQuery" >>
            beam.Create(fake_person_id_to_county_query_result)
            | "Convert person_id to counties to KV" >> beam.ParDo(
                ConvertDictToKVTuple(), 'person_id'))

        incarceration_period_judicial_district_association_row = \
            {'person_id': fake_person_id, 'incarceration_period_id': 123, 'judicial_district_code': 'NW'}

        ip_to_judicial_district_kv = (
            test_pipeline
            |
            "Read incarceration_period to judicial_district associations from BigQuery"
            >> beam.Create(
                [incarceration_period_judicial_district_association_row])
            | "Convert ips to judicial districts to KV" >> beam.ParDo(
                ConvertDictToKVTuple(), 'person_id'))

        state_race_ethnicity_population_count = {
            'state_code': state_code,
            'race_or_ethnicity': 'BLACK',
            'population_count': 1,
            'representation_priority': 1
        }

        state_race_ethnicity_population_counts = (
            test_pipeline
            | 'Create state_race_ethnicity_population_count table' >>
            beam.Create([state_race_ethnicity_population_count]))

        # Group each StatePerson with their related entities
        person_entities = (
            {
                'person':
                persons,
                'sentence_groups':
                sentence_groups_with_hydrated_sentences,
                'incarceration_period_judicial_district_association':
                ip_to_judicial_district_kv
            }
            | 'Group StatePerson to SentenceGroups' >> beam.CoGroupByKey())

        # Identify IncarcerationEvents events from the StatePerson's StateIncarcerationPeriods
        person_incarceration_events = (
            person_entities | 'Classify Incarceration Events' >> beam.ParDo(
                pipeline.ClassifyIncarcerationEvents(),
                AsDict(person_id_to_county_kv)))

        person_metadata = (
            persons
            | "Build the person_metadata dictionary" >> beam.ParDo(
                BuildPersonMetadata(),
                AsList(state_race_ethnicity_population_counts)))

        person_incarceration_events_with_metadata = (
            {
                'person_events': person_incarceration_events,
                'person_metadata': person_metadata
            }
            | 'Group IncarcerationEvents with person-level metadata' >>
            beam.CoGroupByKey()
            |
            'Organize StatePerson, PersonMetadata and IncarcerationEvents for calculations'
            >> beam.ParDo(ExtractPersonEventsMetadata()))

        # Get pipeline job details for accessing job_id
        all_pipeline_options = PipelineOptions().get_all_options()

        # Add timestamp for local jobs
        job_timestamp = datetime.datetime.now().strftime(
            '%Y-%m-%d_%H_%M_%S.%f')
        all_pipeline_options['job_timestamp'] = job_timestamp

        metric_types = metric_types_filter if metric_types_filter else {'ALL'}

        # Get IncarcerationMetrics
        incarceration_metrics = (
            person_incarceration_events_with_metadata
            | 'Get Incarceration Metrics' >>  # type: ignore
            pipeline.GetIncarcerationMetrics(
                pipeline_options=all_pipeline_options,
                metric_types=metric_types,
                calculation_end_month=None,
                calculation_month_count=-1))

        assert_that(
            incarceration_metrics,
            AssertMatchers.validate_metric_type(allow_empty=allow_empty),
            'Assert that all metrics are of the expected type.')

        assert_that(
            incarceration_metrics,
            AssertMatchers.validate_pipeline_test(expected_metric_types),
            'Assert the type of metrics produced are expected')

        test_pipeline.run()
示例#4
0
    def testProgramPipeline(self):
        """Tests the program pipeline."""
        fake_person_id = 12345

        fake_person = schema.StatePerson(
            person_id=fake_person_id,
            gender=Gender.MALE,
            birthdate=date(1970, 1, 1),
            residency_status=ResidencyStatus.PERMANENT)

        persons_data = [normalized_database_base_dict(fake_person)]

        race_1 = schema.StatePersonRace(person_race_id=111,
                                        state_code='CA',
                                        race=Race.BLACK,
                                        person_id=fake_person_id)

        race_2 = schema.StatePersonRace(person_race_id=111,
                                        state_code='ND',
                                        race=Race.WHITE,
                                        person_id=fake_person_id)

        races_data = normalized_database_base_dict_list([race_1, race_2])

        ethnicity = schema.StatePersonEthnicity(person_ethnicity_id=111,
                                                state_code='CA',
                                                ethnicity=Ethnicity.HISPANIC,
                                                person_id=fake_person_id)

        ethnicity_data = normalized_database_base_dict_list([ethnicity])

        program_assignment = schema.StateProgramAssignment(
            program_assignment_id=123,
            referral_date=date(2015, 5, 10),
            person_id=fake_person_id)

        assessment = schema.StateAssessment(assessment_id=298374,
                                            assessment_date=date(2015, 3, 19),
                                            assessment_type='LSIR',
                                            person_id=fake_person_id)

        supervision_period = schema.StateSupervisionPeriod(
            supervision_period_id=1111,
            state_code='CA',
            county_code='124',
            start_date=date(2015, 3, 14),
            termination_date=date(2016, 12, 29),
            supervision_type=StateSupervisionType.PROBATION,
            person_id=fake_person_id)

        program_assignment_data = [
            normalized_database_base_dict(program_assignment)
        ]

        assessment_data = [normalized_database_base_dict(assessment)]

        supervision_periods_data = [
            normalized_database_base_dict(supervision_period)
        ]

        supervision_violation_response = \
            database_test_utils.generate_test_supervision_violation_response(
                fake_person_id)

        supervision_violation_response_data = [
            normalized_database_base_dict(supervision_violation_response)
        ]

        data_dict = {
            schema.StatePerson.__tablename__: persons_data,
            schema.StatePersonRace.__tablename__: races_data,
            schema.StatePersonEthnicity.__tablename__: ethnicity_data,
            schema.StateSupervisionViolationResponse.__tablename__:
            supervision_violation_response_data,
            schema.StateSupervisionPeriod.__tablename__:
            supervision_periods_data,
            schema.StateProgramAssignment.__tablename__:
            program_assignment_data,
            schema.StateAssessment.__tablename__: assessment_data
        }

        test_pipeline = TestPipeline()

        # Get StatePersons
        persons = (test_pipeline
                   | 'Load Persons' >> extractor_utils.BuildRootEntity(
                       dataset=None,
                       data_dict=data_dict,
                       root_schema_class=schema.StatePerson,
                       root_entity_class=entities.StatePerson,
                       unifying_id_field='person_id',
                       build_related_entities=True))

        # Get StateProgramAssignments
        program_assignments = (
            test_pipeline
            | 'Load Program Assignments' >> extractor_utils.BuildRootEntity(
                dataset=None,
                data_dict=data_dict,
                root_schema_class=schema.StateProgramAssignment,
                root_entity_class=entities.StateProgramAssignment,
                unifying_id_field='person_id',
                build_related_entities=True))

        # Get StateAssessments
        assessments = (test_pipeline
                       | 'Load Assessments' >> extractor_utils.BuildRootEntity(
                           dataset=None,
                           data_dict=data_dict,
                           root_schema_class=schema.StateAssessment,
                           root_entity_class=entities.StateAssessment,
                           unifying_id_field='person_id',
                           build_related_entities=False))

        # Get StateSupervisionPeriods
        supervision_periods = (
            test_pipeline
            | 'Load SupervisionPeriods' >> extractor_utils.BuildRootEntity(
                dataset=None,
                data_dict=data_dict,
                root_schema_class=schema.StateSupervisionPeriod,
                root_entity_class=entities.StateSupervisionPeriod,
                unifying_id_field='person_id',
                build_related_entities=False))

        supervision_period_to_agent_map = {
            'agent_id': 1010,
            'agent_external_id': 'OFFICER0009',
            'district_external_id': '10',
            'supervision_period_id': supervision_period.supervision_period_id
        }

        supervision_period_to_agent_associations = (
            test_pipeline
            | 'Create SupervisionPeriod to Agent table' >> beam.Create(
                [supervision_period_to_agent_map]))

        supervision_period_to_agent_associations_as_kv = (
            supervision_period_to_agent_associations
            | 'Convert SupervisionPeriod to Agent table to KV tuples' >>
            beam.ParDo(pipeline.ConvertDictToKVTuple(),
                       'supervision_period_id'))

        # Group each StatePerson with their other entities
        persons_entities = ({
            'person': persons,
            'program_assignments': program_assignments,
            'assessments': assessments,
            'supervision_periods': supervision_periods
        }
                            |
                            'Group StatePerson to StateProgramAssignments and'
                            >> beam.CoGroupByKey())

        # Identify ProgramEvents from the StatePerson's
        # StateProgramAssignments
        person_program_events = (
            persons_entities
            | beam.ParDo(
                pipeline.ClassifyProgramAssignments(),
                AsDict(supervision_period_to_agent_associations_as_kv)))

        # Get pipeline job details for accessing job_id
        all_pipeline_options = PipelineOptions().get_all_options()

        # Add timestamp for local jobs
        job_timestamp = datetime.datetime.now().strftime(
            '%Y-%m-%d_%H_%M_%S.%f')
        all_pipeline_options['job_timestamp'] = job_timestamp

        # Get program metrics
        program_metrics = (person_program_events
                           |
                           'Get Program Metrics' >> pipeline.GetProgramMetrics(
                               pipeline_options=all_pipeline_options,
                               inclusions=ALL_INCLUSIONS_DICT,
                               calculation_month_limit=-1))

        assert_that(program_metrics, AssertMatchers.validate_pipeline_test())

        test_pipeline.run()