def test_model_sum(deeprec_resource_path, deeprec_config_path):
    data_path = os.path.join(deeprec_resource_path, "slirec")
    yaml_file = os.path.join(deeprec_config_path, "sum.yaml")
    train_file = os.path.join(data_path, r"train_data")
    valid_file = os.path.join(data_path, r"valid_data")
    test_file = os.path.join(data_path, r"test_data")
    output_file = os.path.join(data_path, "output.txt")
    train_num_ngs = (
        4  # number of negative instances with a positive instance for training
    )
    valid_num_ngs = (
        4  # number of negative instances with a positive instance for validation
    )
    test_num_ngs = (
        9  # number of negative instances with a positive instance for testing
    )

    if not os.path.exists(train_file):
        user_vocab = os.path.join(data_path, r"user_vocab.pkl")
        item_vocab = os.path.join(data_path, r"item_vocab.pkl")
        cate_vocab = os.path.join(data_path, r"category_vocab.pkl")
        reviews_name = "reviews_Movies_and_TV_5.json"
        meta_name = "meta_Movies_and_TV.json"
        reviews_file = os.path.join(data_path, reviews_name)
        meta_file = os.path.join(data_path, meta_name)
        sample_rate = (
            0.005  # sample a small item set for training and testing here for example
        )

        input_files = [
            reviews_file,
            meta_file,
            train_file,
            valid_file,
            test_file,
            user_vocab,
            item_vocab,
            cate_vocab,
        ]
        download_and_extract(reviews_name, reviews_file)
        download_and_extract(meta_name, meta_file)
        data_preprocessing(*input_files,
                           sample_rate=sample_rate,
                           valid_num_ngs=valid_num_ngs,
                           test_num_ngs=test_num_ngs)

    hparams = prepare_hparams(yaml_file,
                              learning_rate=0.01,
                              epochs=1,
                              train_num_ngs=train_num_ngs)
    assert hparams is not None

    input_creator = SequentialIterator
    model = SUMModel(hparams, input_creator)
    assert model.run_eval(valid_file, num_ngs=valid_num_ngs) is not None
    assert isinstance(
        model.fit(train_file, valid_file, valid_num_ngs=valid_num_ngs),
        BaseModel)
    assert model.predict(valid_file, output_file) is not None
示例#2
0
def test_Sequential_Iterator(resource_path):
    data_path = os.path.join(resource_path, "..", "resources", "deeprec", "slirec")
    yaml_file = os.path.join(
        resource_path,
        "..",
        "..",
        "reco_utils",
        "recommender",
        "deeprec",
        "config",
        "sli_rec.yaml",
    )
    train_file = os.path.join(data_path, r"train_data")

    if not os.path.exists(train_file):
        valid_file = os.path.join(data_path, r"valid_data")
        test_file = os.path.join(data_path, r"test_data")
        user_vocab = os.path.join(data_path, r"user_vocab.pkl")
        item_vocab = os.path.join(data_path, r"item_vocab.pkl")
        cate_vocab = os.path.join(data_path, r"category_vocab.pkl")

        reviews_name = "reviews_Movies_and_TV_5.json"
        meta_name = "meta_Movies_and_TV.json"
        reviews_file = os.path.join(data_path, reviews_name)
        meta_file = os.path.join(data_path, meta_name)
        valid_num_ngs = (
            4  # number of negative instances with a positive instance for validation
        )
        test_num_ngs = (
            9  # number of negative instances with a positive instance for testing
        )
        sample_rate = (
            0.01  # sample a small item set for training and testing here for example
        )

        input_files = [
            reviews_file,
            meta_file,
            train_file,
            valid_file,
            test_file,
            user_vocab,
            item_vocab,
            cate_vocab,
        ]
        download_and_extract(reviews_name, reviews_file)
        download_and_extract(meta_name, meta_file)
        data_preprocessing(
            *input_files,
            sample_rate=sample_rate,
            valid_num_ngs=valid_num_ngs,
            test_num_ngs=test_num_ngs
        )

    hparams = prepare_hparams(yaml_file)
    iterator = SequentialIterator(hparams, tf.Graph())
    assert iterator is not None
    for res in iterator.load_data_from_file(train_file):
        assert isinstance(res, dict)
示例#3
0
def test_slirec_component_definition(resource_path):
    data_path = os.path.join(resource_path, "..", "resources", "deeprec",
                             "slirec")
    yaml_file = os.path.join(
        resource_path,
        "..",
        "..",
        "reco_utils",
        "recommender",
        "deeprec",
        "config",
        "sli_rec.yaml",
    )
    yaml_file_nextitnet = os.path.join(
        resource_path,
        "..",
        "..",
        "reco_utils",
        "recommender",
        "deeprec",
        "config",
        "nextitnet.yaml",
    )
    train_file = os.path.join(data_path, r"train_data")

    if not os.path.exists(train_file):
        train_file = os.path.join(data_path, r"train_data")
        valid_file = os.path.join(data_path, r"valid_data")
        test_file = os.path.join(data_path, r"test_data")
        user_vocab = os.path.join(data_path, r"user_vocab.pkl")
        item_vocab = os.path.join(data_path, r"item_vocab.pkl")
        cate_vocab = os.path.join(data_path, r"category_vocab.pkl")

        reviews_name = "reviews_Movies_and_TV_5.json"
        meta_name = "meta_Movies_and_TV.json"
        reviews_file = os.path.join(data_path, reviews_name)
        meta_file = os.path.join(data_path, meta_name)
        valid_num_ngs = (
            4  # number of negative instances with a positive instance for validation
        )
        test_num_ngs = (
            9  # number of negative instances with a positive instance for testing
        )
        sample_rate = (
            0.01  # sample a small item set for training and testing here for example
        )

        input_files = [
            reviews_file,
            meta_file,
            train_file,
            valid_file,
            test_file,
            user_vocab,
            item_vocab,
            cate_vocab,
        ]
        download_and_extract(reviews_name, reviews_file)
        download_and_extract(meta_name, meta_file)
        data_preprocessing(*input_files,
                           sample_rate=sample_rate,
                           valid_num_ngs=valid_num_ngs,
                           test_num_ngs=test_num_ngs)

    hparams = prepare_hparams(
        yaml_file, train_num_ngs=4
    )  # confirm the train_num_ngs when initializing a SLi_Rec model.
    model = SLI_RECModel(hparams, SequentialIterator)
    # nextitnet model
    hparams_nextitnet = prepare_hparams(yaml_file_nextitnet, train_num_ngs=4)
    model_nextitnet = NextItNetModel(hparams_nextitnet, NextItNetIterator)

    assert model.logit is not None
    assert model.update is not None
    assert model.iterator is not None

    assert model_nextitnet.logit is not None
    assert model_nextitnet.update is not None
    assert model_nextitnet.iterator is not None