def test_model_sum(deeprec_resource_path, deeprec_config_path): data_path = os.path.join(deeprec_resource_path, "slirec") yaml_file = os.path.join(deeprec_config_path, "sum.yaml") train_file = os.path.join(data_path, r"train_data") valid_file = os.path.join(data_path, r"valid_data") test_file = os.path.join(data_path, r"test_data") output_file = os.path.join(data_path, "output.txt") train_num_ngs = ( 4 # number of negative instances with a positive instance for training ) valid_num_ngs = ( 4 # number of negative instances with a positive instance for validation ) test_num_ngs = ( 9 # number of negative instances with a positive instance for testing ) if not os.path.exists(train_file): user_vocab = os.path.join(data_path, r"user_vocab.pkl") item_vocab = os.path.join(data_path, r"item_vocab.pkl") cate_vocab = os.path.join(data_path, r"category_vocab.pkl") reviews_name = "reviews_Movies_and_TV_5.json" meta_name = "meta_Movies_and_TV.json" reviews_file = os.path.join(data_path, reviews_name) meta_file = os.path.join(data_path, meta_name) sample_rate = ( 0.005 # sample a small item set for training and testing here for example ) input_files = [ reviews_file, meta_file, train_file, valid_file, test_file, user_vocab, item_vocab, cate_vocab, ] download_and_extract(reviews_name, reviews_file) download_and_extract(meta_name, meta_file) data_preprocessing( *input_files, sample_rate=sample_rate, valid_num_ngs=valid_num_ngs, test_num_ngs=test_num_ngs ) hparams = prepare_hparams( yaml_file, learning_rate=0.01, epochs=1, train_num_ngs=train_num_ngs ) assert hparams is not None input_creator = SequentialIterator model = SUMModel(hparams, input_creator) assert model.run_eval(valid_file, num_ngs=valid_num_ngs) is not None assert isinstance( model.fit(train_file, valid_file, valid_num_ngs=valid_num_ngs), BaseModel ) assert model.predict(valid_file, output_file) is not None
def test_Sequential_Iterator(deeprec_resource_path, deeprec_config_path): data_path = os.path.join(deeprec_resource_path, "slirec") yaml_file = os.path.join(deeprec_config_path, "sli_rec.yaml") train_file = os.path.join(data_path, r"train_data") if not os.path.exists(train_file): valid_file = os.path.join(data_path, r"valid_data") test_file = os.path.join(data_path, r"test_data") user_vocab = os.path.join(data_path, r"user_vocab.pkl") item_vocab = os.path.join(data_path, r"item_vocab.pkl") cate_vocab = os.path.join(data_path, r"category_vocab.pkl") reviews_name = "reviews_Movies_and_TV_5.json" meta_name = "meta_Movies_and_TV.json" reviews_file = os.path.join(data_path, reviews_name) meta_file = os.path.join(data_path, meta_name) valid_num_ngs = ( 4 # number of negative instances with a positive instance for validation ) test_num_ngs = ( 9 # number of negative instances with a positive instance for testing ) sample_rate = ( 0.01 # sample a small item set for training and testing here for example ) input_files = [ reviews_file, meta_file, train_file, valid_file, test_file, user_vocab, item_vocab, cate_vocab, ] download_and_extract(reviews_name, reviews_file) download_and_extract(meta_name, meta_file) data_preprocessing(*input_files, sample_rate=sample_rate, valid_num_ngs=valid_num_ngs, test_num_ngs=test_num_ngs) hparams = prepare_hparams(yaml_file) iterator = SequentialIterator(hparams, tf.Graph()) assert iterator is not None for res in iterator.load_data_from_file(train_file): assert isinstance(res, dict)
def sequential_files(deeprec_resource_path): data_path = os.path.join(deeprec_resource_path, "slirec") train_file = os.path.join(data_path, r"train_data") valid_file = os.path.join(data_path, r"valid_data") test_file = os.path.join(data_path, r"test_data") user_vocab = os.path.join(data_path, r"user_vocab.pkl") item_vocab = os.path.join(data_path, r"item_vocab.pkl") cate_vocab = os.path.join(data_path, r"category_vocab.pkl") reviews_name = "reviews_Movies_and_TV_5.json" meta_name = "meta_Movies_and_TV.json" reviews_file = os.path.join(data_path, reviews_name) meta_file = os.path.join(data_path, meta_name) valid_num_ngs = ( 4 # number of negative instances with a positive instance for validation ) test_num_ngs = ( 9 # number of negative instances with a positive instance for testing ) sample_rate = ( 0.01 # sample a small item set for training and testing here for example ) input_files = [ reviews_file, meta_file, train_file, valid_file, test_file, user_vocab, item_vocab, cate_vocab, ] download_and_extract(reviews_name, reviews_file) download_and_extract(meta_name, meta_file) data_preprocessing(*input_files, sample_rate=sample_rate, valid_num_ngs=valid_num_ngs, test_num_ngs=test_num_ngs) return ( data_path, user_vocab, item_vocab, cate_vocab, )