示例#1
0
def parse_narc_content(content, n=0, to_queryset=False):
    soup = BeautifulSoup(content, 'html.parser')
    recs = RecordParser(records=[
        OrderedDict((child.name, child.text) for child in table.children)
        for table in soup.find_all('table1')
    ],
                        drop_if=lambda row: not row.get('narct_owarh_ymd') or
                        row['drug_cd'] not in drugDB or not row.get('ptnt_no'))

    recs.select([
        'narct_owarh_ymd', 'ward', 'ori_ord_ymd', 'ord_no', 'ptnt_no',
        'ptnt_nm', 'drug_cd', 'drug_nm', 'ord_qty_std', 'tot_qty',
        'get_dept_nm'
    ],
                where=lambda row: row['ret_gb'] not in ['D/C', '반납', '수납취소'])
    recs.vlookup(drugDB.values(), 'drug_cd', 'code', [('amount', 0),
                                                      ('amount_unit', ''),
                                                      ('name', ""),
                                                      ('std_unit', "")])
    recs.format([('tot_qty', 0.0), ('ord_qty_std', 0.0)])
    recs.add_column([('잔량', lambda row: row['tot_qty'] - row['ord_qty_std']),
                     ('폐기량', lambda row: row['잔량'] * row['amount'])])
    recs.update([('잔량', lambda row: round(row['잔량'], 2)),
                 ('폐기량', lambda row: round(row['폐기량'], 2))])

    recs.select('*', where=lambda row: row['잔량'] > 0).order_by(
        ['name', 'narct_owarh_ymd', 'ward'])
    if len(recs.records) == 0:
        return [], []
    recs.rename([('narct_owarh_ymd', '불출일자'), ('ori_ord_ymd', '원처방일자'),
                 ('ord_no', '처방번호[묶음]'), ('tot_qty', '집계량'), ('name', '폐기약품명'),
                 ('drug_cd', '약품코드'), ('amount', '집계량'),
                 ('ord_qty_std', '처방량(규격단위)'), ('drug_nm', '약품명'),
                 ('amount_unit', '폐기단위'), ('ptnt_nm', '환자명'),
                 ('ptnt_no', '환자번호'), ('std_unit', '규격단위'), ('ward', '병동')])
    table = recs.select([
        '불출일자', '병동', '환자번호', '환자명', '폐기약품명', '약품코드', '처방량(규격단위)', '잔량',
        '규격단위', '폐기량', '폐기단위', 'get_dept_nm'
    ])
    table.add_column([('ord_amt', lambda row: row['처방량(규격단위)'])])
    if to_queryset == False:
        table = table.to2darry()

    grp = recs.group_by(
        columns=['폐기약품명'],
        aggset=[('폐기량', sum, '폐기량__sum'), ('폐기약품명', len, '폐기약품명__len')],
        selects=['폐기약품명', '폐기약품명__len', '규격단위', '폐기량__sum', '폐기단위', '약품코드'],
        inplace=False)
    # grp = map(lambda row: round(row['폐기량__sum'], 2), grp)
    for row in grp:
        row['폐기량__sum'] = round(row['폐기량__sum'], 2)

    return table[n:], grp
示例#2
0
def get_chemo_label_object(wards, ord_start_date, ord_end_date, start_dt,
                           end_dt):
    from recordlib import RecordParser, read_excel
    drugs_recs = read_excel(DRUG_DB_PATH)
    odr = OrderSelectApiRequest(ord_start_date, ord_end_date, wards)
    odr.api_calls()
    records = odr.get_records()
    ord_recs = RecordParser(records=records,
                            drop_if=lambda row: row.get('rcpt_dt', "") == "")

    # if real
    ord_recs.select('*', where=lambda row: start_dt <= row['rcpt_dt'] < end_dt)

    ord_recs.vlookup(drugs_recs, 'ord_cd',
                     '약품코드', [('항암제구분', '0'), ('함량1', 0.0), ('함량단위1', ''),
                              ('함량2', 0.0), ('함량단위2', '')])
    ord_recs.format([('ord_qty', 0.0), ('함량1', 0.0), ('함량2', 0.0)])
    ord_recs.add_column([('amt_vol', lambda row: row['ord_qty'] * row['함량1']),
                         ('amt_wgt', lambda row: row['ord_qty'] * row['함량2'])])

    chemo_index = ord_recs.select(['ord_ymd', 'rcpt_seq', 'medi_no', 'ord_no'],
                                  where=lambda row: row['항암제구분'] == '1',
                                  inplace=False).to2darry(headers=False)
    ord_recs.select('*',
                    where=lambda r: [
                        r['ord_ymd'], r['rcpt_seq'], r['medi_no'], r['ord_no']
                    ] in chemo_index)
    detail = ord_recs.records.copy()
    f, l = ord_recs.min('rcpt_dt'), ord_recs.max('rcpt_dt')
    ord_recs.group_by(columns=['ord_ymd', 'rcpt_seq', 'medi_no', 'ord_cd'],
                      aggset=[('amt_vol', sum, 'amt_vol_sum'),
                              ('amt_wgt', sum, 'amt_wgt_sum'),
                              ('ord_qty', sum, 'ord_qty_sum'),
                              ('drug_nm', len, 'drug_nm_count')],
                      selects=[
                          'ord_cd', 'drug_nm', 'ord_unit_nm', 'amt_vol_sum',
                          'amt_wgt_sum', 'ord_qty_sum', '함량단위1', '함량단위2',
                          'drug_nm_count'
                      ],
                      inplace=True)
    ord_recs.add_column([('rcpt_dt_min', lambda x: f),
                         ('rcpt_dt_max', lambda x: l)])
    return ord_recs.records, detail


# path  = 'C:\\Users\\user\\Desktop\\집계표.xlsx'
# ret = get_label_object(['P', 'S'], ['51', '52', '61', '71', '81', '92', 'IC'], '2017-04-09','2017-04-10', '2017-04-08 00:00:00', '2017-04-08 23:23:00')
# ret.to_excel(path)
# os.startfile(path)

# get_label_object_test(['P', 'S'], ['51', '52', '61', '71', '81', '92', 'IC'], '2017-04-09','2017-04-10', '2017-04-08 00:00:00', '2017-04-08 23:23:00')
示例#3
0
def get_inj_object(types,
                   wards,
                   ord_start_date,
                   ord_end_date,
                   start_dt,
                   end_dt,
                   test=False):
    from recordlib import RecordParser, read_excel
    drug_db_recs = read_excel(
        DRUG_DB_PATH,
        drop_if=lambda row: row['투여경로'] != '3' or row['효능코드명'] in
        ['혈액대용제', '당류제'] or row['항암제구분'] == '1' or row['약품법적구분'] in ['1', '2'])
    pk_set = drug_db_recs.unique('약품코드')
    odr = OrderSelectApiRequest(ord_start_date, ord_end_date, wards)

    if test:
        odr.set_test_response('response_samples/ordSelect51.sample.rsp')
    else:
        odr.api_calls()

    ord_recs = RecordParser(
        records=odr.get_records(),
        drop_if=lambda row: row.get('ord_cd') not in pk_set or row.get(
            'rcpt_dt', "") == "" or row.get('rcpt_ord_tp_nm') not in types)
    ord_recs.format([('ord_qty', 0.0), ('ord_frq', 0), ('ord_day', 0)])
    if not test:
        ord_recs.select('*',
                        where=lambda row: start_dt <= row['rcpt_dt'] < end_dt)

    ord_recs.add_column([
        ('once_amt', lambda row: round(row['ord_qty'] / row['ord_frq'], 2)),
        ('total_amt', lambda row: row['ord_qty'] * row['ord_day'])
    ])

    detail = ord_recs.records.copy()
    f, l = ord_recs.min('rcpt_dt'), ord_recs.max('rcpt_dt')
    ord_recs.group_by(columns=['ord_cd'],
                      aggset=[('ord_qty', sum, 'ord_qty_sum'),
                              ('drug_nm', len, 'drug_nm_count'),
                              ('total_amt', sum, 'total_amt_sum')],
                      selects=[
                          'ord_cd', 'drug_nm', 'ord_qty_sum', 'ord_unit_nm',
                          'drug_nm_count', 'total_amt_sum'
                      ])
    ord_recs.add_column([('rcpt_dt_min', lambda x: f),
                         ('rcpt_dt_max', lambda x: l)])
    return ord_recs.records, detail
示例#4
0
def get_chemo_label_object_test(wards, ord_start_date, ord_end_date, start_dt,
                                end_dt):
    from recordlib import RecordParser, read_excel
    drugs_recs = read_excel(DRUG_DB_PATH)
    odr = OrderSelectApiRequest(ord_start_date, ord_end_date, wards)
    odr.set_test_response('response_samples/ordSelect51.sample.rsp')
    records = odr.get_records()
    ord_recs = RecordParser(records=records,
                            drop_if=lambda row: row.get('rcpt_dt', "") == "")

    # if real
    # ord_recs.select('*', where= lambda row: start_dt <= row['rcpt_dt'] < end_dt)

    ord_recs.vlookup(drugs_recs, 'ord_cd',
                     '약품코드', [('항암제구분', '0'), ('함량1', 0.0), ('함량단위1', ''),
                              ('함량2', 0.0), ('함량단위2', '')])
    ord_recs.format([('ord_qty', 0.0), ('함량1', 0.0), ('함량2', 0.0)])
    ord_recs.add_column([('amt_vol', lambda row: row['ord_qty'] * row['함량1']),
                         ('amt_wgt', lambda row: row['ord_qty'] * row['함량2'])])

    chemo_index = ord_recs.select(['ord_ymd', 'rcpt_seq', 'medi_no', 'ord_no'],
                                  where=lambda row: row['항암제구분'] == '1',
                                  inplace=False).to2darry(headers=False)
    ord_recs.select('*',
                    where=lambda r: [
                        r['ord_ymd'], r['rcpt_seq'], r['medi_no'], r['ord_no']
                    ] in chemo_index)
    detail = ord_recs.records.copy()
    f, l = ord_recs.min('rcpt_dt'), ord_recs.max('rcpt_dt')
    ord_recs.group_by(columns=['ord_ymd', 'rcpt_seq', 'medi_no', 'ord_cd'],
                      aggset=[('amt_vol', sum, 'amt_vol_sum'),
                              ('amt_wgt', sum, 'amt_wgt_sum'),
                              ('ord_qty', sum, 'ord_qty_sum'),
                              ('drug_nm', len, 'drug_nm_count')],
                      selects=[
                          'ord_cd', 'drug_nm', 'ord_unit_nm', 'amt_vol_sum',
                          'amt_wgt_sum', 'ord_qty_sum', '함량단위1', '함량단위2',
                          'drug_nm_count'
                      ],
                      inplace=True)
    ord_recs.add_column([('rcpt_dt_min', lambda x: f),
                         ('rcpt_dt_max', lambda x: l)])
    return ord_recs.records, detail
示例#5
0
def get_label_object(kinds, types, wards, ord_start_date, ord_end_date,
                     start_dt, end_dt):
    from recordlib import RecordParser, read_excel
    try:
        drug_db_recs = get_label_list()
        drug_db_recs = RecordParser(
            drug_db_recs, drop_if=lambda row: row['단일포장구분'] not in ['S', 'P'])
    except:
        drug_db_recs = read_excel(
            DRUG_DB_PATH, drop_if=lambda row: row['단일포장구분'] not in ['S', 'P'])

    pk_set = drug_db_recs.unique('약품코드')
    odr = OrderSelectApiRequest(ord_start_date, ord_end_date, wards)
    odr.api_calls()
    records = odr.get_records()
    ord_recs = RecordParser(
        records=records,
        drop_if=lambda row: row.get('ord_cd') not in pk_set or row.get(
            'rcpt_dt', "") == "" or row.get('rcpt_ord_tp_nm') not in types)

    ord_recs.vlookup(drug_db_recs, 'ord_cd', '약품코드', [('단일포장구분', 'S')])
    ord_recs.format([('ord_qty', 0.0), ('ord_frq', 0), ('ord_day', 0)])

    ord_recs.select('*', where=lambda row: start_dt <= row['rcpt_dt'] < end_dt)
    ord_recs.add_column([
        ('once_amt', lambda row: round(row['ord_qty'] / row['ord_frq'], 2)),
        ('total_amt', lambda row: row['ord_qty'] * row['ord_day'])
    ])
    detail = ord_recs.records.copy()
    f, l = ord_recs.min('rcpt_dt'), ord_recs.max('rcpt_dt')

    ord_recs.group_by(columns=['단일포장구분', 'drug_nm'],
                      aggset=[('ord_qty', sum, 'ord_qty_sum'),
                              ('drug_nm', len, 'drug_nm_count'),
                              ('total_amt', sum, 'total_amt_sum')],
                      selects=[
                          '단일포장구분', 'ord_cd', 'drug_nm', 'ord_qty_sum',
                          'ord_unit_nm', 'drug_nm_count', 'total_amt_sum'
                      ])
    ord_recs.add_column([('rcpt_dt_min', lambda x: f),
                         ('rcpt_dt_max', lambda x: l)])
    ord_recs.value_map([('단일포장구분', {'S': '작은라벨', 'P': '큰라벨'}, '')])
    return ord_recs.records, detail