def test_init(self): algorithms = Full() indexer = recordlinkage.Index(algorithms) result = indexer.index(self.a, self.b) expected = Full().index(self.a, self.b) ptm.assert_index_equal(result, expected)
def test_basic_link(self): """FULL: Test basic characteristics of full indexing (link).""" from recordlinkage.index import Full # finding duplicates index_cl = Full() pairs = index_cl.index((self.a, self.b)) assert isinstance(pairs, pd.MultiIndex) assert len(pairs) == len(self.a) * len(self.b) assert pairs.is_unique
def test_basic_dedup(self): """FULL: Test basic characteristics of full indexing (dedup).""" from recordlinkage.index import Full # finding duplicates index_cl = Full() pairs = index_cl.index(self.a) self.assertIsInstance(pairs, pd.MultiIndex) self.assertEqual(len(pairs), len(self.a) * (len(self.a) - 1) / 2) self.assertTrue(pairs.is_unique)
def test_add_dedup(self): indexer1 = Full() indexer2 = Block(left_on='var_arange', right_on='var_arange') expected = indexer1.index(self.a).union(indexer2.index(self.a)) indexer = recordlinkage.Index() indexer.add( [Full(), Block(left_on='var_arange', right_on='var_arange')]) result = indexer.index(self.a) ptm.assert_index_equal(result, expected)
def match_affil(affiliation: str, k: int = 3): """ Match affliation to GRID dataset. Return a da """ parsed_affil = parse_affil(affiliation) df = pd.Dataframe([parsed_affil]) indexer = recordlinkage.Index() indexer.add(Full()) candidate_links = indexer.index(df, grid_df) # recordlinkage comparer compare = recordlinkage.Compare() compare.exact("institution", "institution") compare.string("location", "location", method="jarowinkler") compare.string("country", "country", method="jarowinkler") features_df = compare.compute(candidate_links, df, grid_df) features_df["score"] = np.average(features_df, axis=1, weights=[0.6, 0.2, 0.2]) topk_df = features_df[["score"]].reset_index().sort_values( "score", ascending=False).head(k) topk_df = topk_df.merge(grid_df.reset_index(), left_on="level_1", right_on="index").\ drop(labels=["level_0", "level_1", "location"], axis=1) return topk_df.to_dict(orient="records")
def get_test_algorithms(): """Return list of algorithms""" return [ Full(), Block(on='var_arange'), SortedNeighbourhood(on='var_arange'), Random(10, random_state=100, replace=True), Random(10, random_state=100, replace=False) ]
def submit(self): #self.progress_bar.start() ##self.df1_combobox.set('SpringAlmaOutput') ##self.df2_combobox.set('SpringBookstoreList') selected_threshold = self.threshold.get() input_file = self.file_path.get() df1 = pd.read_excel(input_file, header=2, sheet_name=self.df1_combobox.get()) df2 = pd.read_excel(input_file, sheet_name=self.df2_combobox.get()) indexer = rl.Index() indexer.add(Full()) pairs = indexer.index( df1, df2, ) print(len(pairs)) comparer = rl.Compare() comparer.string('Title', 'Long Title', threshold=float(selected_threshold) / 100, label='Title') potential_matches = comparer.compute(pairs, df1, df2) matches = potential_matches[potential_matches.sum( axis=1) > 0].reset_index() #print(matches) accumulated = matches.loc[:, ['level_0', 'level_1']].merge( df1.loc[:, ['Title', 'ISBN']], left_on='level_0', right_index=True) accumulated = accumulated.merge(df2.loc[:, ['Long Title', 'Internal ID']], left_on='level_1', right_index=True) accumulated.head() accumulated.to_excel('{}-{}.xlsx'.format( path.basename(self.file_io.name), selected_threshold), index=False, columns=['Internal ID', 'Long Title', 'Title']) dfStyler = accumulated.style.set_properties(**{'text-align': 'left'}) dfStyler.set_table_styles( [dict(selector='th', props=[('text-align', 'left')])]) self.text_output.delete(1.0, 'end') self.text_output.insert( END, accumulated.to_string( index=False, columns=['Internal ID', 'Long Title', 'Title']))
def full(self): """Add a 'full' index. Shortcut of :class:`recordlinkage.index.Full`:: from recordlinkage.index import Full indexer = recordlinkage.Index() indexer.add(Full()) """ indexer = Full() self.add(indexer) return self
def test_random_desc(self): df_a = pd.DataFrame({'v': list("abcde")}) df_b = pd.DataFrame({'v': list("abcde")}) pairs = Full().index(df_a, df_b) c = recordlinkage.Compare() c.exact("v", "v") c.add(RandomDiscrete(label='random')) cv = c.compute(pairs, df_a, df_b) assert isinstance(cv, pd.DataFrame) assert cv['random'].notnull().all() assert cv['random'].isin([0, 1]).all()
def test_random_cont(self): df_a = pd.DataFrame({'v': list("abcde")}) df_b = pd.DataFrame({'v': list("abcde")}) pairs = Full().index(df_a, df_b) c = recordlinkage.Compare() c.exact("v", "v") c.add(RandomContinuous(label='random')) cv = c.compute(pairs, df_a, df_b) assert isinstance(cv, pd.DataFrame) assert cv['random'].notnull().all() assert cv['random'].min() >= 0.0 assert cv['random'].max() <= 1.0
def test_iterative(self): """Test the iterative behaviour.""" # SINGLE STEP index_class = Full() pairs = index_class.index((self.a, self.b)) pairs = pd.DataFrame(index=pairs).sort_index() # MULTI STEP index_class = Full() pairs1 = index_class.index((self.a[0:50], self.b)) pairs2 = index_class.index((self.a[50:100], self.b)) pairs_split = pairs1.append(pairs2) pairs_split = pd.DataFrame(index=pairs_split).sort_index() ptm.assert_frame_equal(pairs, pairs_split)
def test_link_vs_full(self): indexers = [ NeighbourhoodBlock(max_non_matches=len(self.a.columns)), Full(), ] self.assert_index_comparisons(eq, indexers, self.a, self.b)
new_child = new_child[['id', 'publish_date', 'title', 'content', 'related_parents', 'title_child_no_stop', 'content_child_no_stop', 'child_numbers', 'cbs_link']] #---------------------------------------# # Feature creation and model prediction # #---------------------------------------# # Indexation step indexer = recordlinkage.Index() indexer.add(Full()) candidate_links = indexer.index(parents, new_child) # Comparison step - creation of all possible matches compare_cl = recordlinkage.Compare() compare_cl.string('link', 'cbs_link', method='jarowinkler', threshold=0.93, label='feature_link_score') features = compare_cl.compute(candidate_links, parents, new_child) features.reset_index(inplace=True) # Add extra data of parents and new_child to feature table and rename conflicting columns features.loc[:, 'child_id'] = features.apply(find_id, args=(new_child, 'level_1'), axis=1) features.loc[:, 'parent_id'] = features.apply(find_id, args=(parents, 'level_0'), axis=1) features = features.merge(parents, left_on='parent_id', right_on='id', how='left') features = features.merge(new_child, left_on='child_id', right_on='id', how='left') features.drop(columns=['level_0', 'level_1', 'id_x', 'id_y'], inplace=True) features.rename(columns={'title_x': 'title_parent',
def assign_postal_lat_lng(df): addresses = df['addr'].str.cat(df['city'], sep=', ') addresses_to_postal = [address_to_postal.get(a) for a in addresses] addresses_to_lat = [address_to_latlng[a][0] if a in address_to_latlng else None for a in addresses] addresses_to_lng = [address_to_latlng[a][1] if a in address_to_latlng else None for a in addresses] return df.assign(postal=addresses_to_postal, lat=addresses_to_lat, lng=addresses_to_lng) df = assign_postal_lat_lng(df) df.head(6) import recordlinkage as rl from recordlinkage.index import Full full_indexer = Full() pairs = full_indexer.index(df) print(f"Full index: {len(df)} records, {len(pairs)} pairs") from recordlinkage.index import Block postal_indexer = Block('postal') pairs = postal_indexer.index(df) print(f"Postal index: {len(pairs)} pairs") pairs.to_frame()[:10].values
class TestIndexAlgorithmApi(TestData): """General unittest for the indexing API.""" @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_repr(self, index_class): index_str = str(index_class) index_repr = repr(index_class) self.assertEqual(index_str, index_repr) start_str = '<{}'.format(index_class.__class__.__name__) self.assertTrue(index_str.startswith(start_str)) @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_arguments(self, index_class): """Test the index method arguments""" # The following should work index_class.index(self.a) index_class.index(self.a, self.b) index_class.index((self.a)) index_class.index([self.a]) index_class.index((self.a, self.b)) index_class.index([self.a, self.b]) index_class.index(x=(self.a, self.b)) def test_iterative(self): """Test the iterative behaviour.""" # SINGLE STEP index_class = Full() pairs = index_class.index((self.a, self.b)) pairs = pd.DataFrame(index=pairs).sort_index() # MULTI STEP index_class = Full() pairs1 = index_class.index((self.a[0:50], self.b)) pairs2 = index_class.index((self.a[50:100], self.b)) pairs_split = pairs1.append(pairs2) pairs_split = pd.DataFrame(index=pairs_split).sort_index() ptm.assert_frame_equal(pairs, pairs_split) # note possible to sort MultiIndex, so made a frame out of it. @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_empty_imput_dataframes(self, index_class): """Empty DataFrames""" # make an empty dataframe with the columns of self.a and self.b df_a = pd.DataFrame(columns=self.a.columns.tolist()) df_b = pd.DataFrame(columns=self.b.columns.tolist()) from recordlinkage.index import Random if not isinstance(index_class, Random): # make an index pairs = index_class.index((df_a, df_b)) # check if the MultiIndex has length 0 self.assertIsInstance(pairs, pd.MultiIndex) self.assertEqual(len(pairs), 0) else: with self.assertRaises(ValueError): index_class.index((df_a, df_b)) @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_error_handling(self, index_class): """Test error handling on non-unique index.""" # make a non_unique index df_a = self.a.rename(index={self.a.index[1]: self.a.index[0]}, inplace=False) with self.assertRaises(ValueError): index_class.index(df_a) @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_index_names_dedup(self, index_class): index_names = ['dedup', None, 'index', int(1)] expected = [ ['dedup_1', 'dedup_2'], [None, None], ['index_1', 'index_2'], ['1_1', '1_2'], ] for i, name in enumerate(index_names): index_A = pd.Index(self.a.index).rename(name) df_A = pd.DataFrame(self.a, index=index_A) pairs = index_class.index((df_A)) self.assertEqual(pairs.names, expected[i]) self.assertEqual(df_A.index.name, name) @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_duplicated_index_names_dedup(self, index_class): # make an index for each dataframe with a new index name index_a = pd.Index(self.a.index, name='index') df_a = pd.DataFrame(self.a, index=index_a) # make the index pairs = index_class.index(df_a) self.assertEqual(pairs.names, ['index_1', 'index_2']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') # make the index index_class.suffixes = ['_a', '_b'] pairs = index_class.index(df_a) self.assertEqual(pairs.names, ['index_a', 'index_b']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_index_names_link(self, index_class): # tuples with the name of the first and second index index_names = [('index1', 'index2'), ('index1', None), (None, 'index2'), (None, None), (10, 'index2'), (10, 11)] for name_a, name_b in index_names: # make an index for each dataframe with a new index name index_a = pd.Index(self.a.index, name=name_a) df_a = pd.DataFrame(self.a, index=index_a) index_b = pd.Index(self.b.index, name=name_b) df_b = pd.DataFrame(self.b, index=index_b) pairs = index_class.index((df_a, df_b)) self.assertEqual(pairs.names, [name_a, name_b]) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, name_a) self.assertEqual(df_b.index.name, name_b) @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_duplicated_index_names_link(self, index_class): # make an index for each dataframe with a new index name index_a = pd.Index(self.a.index, name='index') df_a = pd.DataFrame(self.a, index=index_a) index_b = pd.Index(self.b.index, name='index') df_b = pd.DataFrame(self.b, index=index_b) # make the index pairs = index_class.index((df_a, df_b)) self.assertEqual(pairs.names, ['index_1', 'index_2']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') self.assertEqual(df_b.index.name, 'index') # make the index index_class.suffixes = ['_a', '_b'] pairs = index_class.index((df_a, df_b)) self.assertEqual(pairs.names, ['index_a', 'index_b']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') self.assertEqual(df_b.index.name, 'index') @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_pickle(self, index_class): """Test if it is possible to pickle the class.""" pickle_path = os.path.join(self.test_dir, 'pickle_compare_obj.pickle') # pickle before indexing pickle.dump(index_class, open(pickle_path, 'wb')) # compute the record pairs index_class.index(self.a, self.b) # pickle after indexing pickle.dump(index_class, open(pickle_path, 'wb'))
import os import unittest import tempfile import shutil import pickle import numpy as np import pandas as pd import pandas.util.testing as ptm from parameterized import parameterized, param import recordlinkage from recordlinkage.index import Full, Block, SortedNeighbourhood, Random TEST_INDEXATION_OBJECTS = [ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ] class TestData(unittest.TestCase): """Unittest object to setup test data.""" @classmethod def setUpClass(cls): n_a = 100 n_b = 150