def test_calculate_ani_valid(test_fragment_matches): # check ANI for *valid* test fragment matches test_fragment_matches = test_fragment_matches[0:2] ani = ra.calculate_ani(test_fragment_matches) expected_ani = sum( map( lambda k: (k['alignment_length'] - k['no_non_identities']) / k[ 'alignment_length'], test_fragment_matches)) / len(test_fragment_matches) assert ani == expected_ani
def test_calculate_ani_all(test_fragment_matches): # check ANI over all test fragment matches ani = ra.calculate_ani(test_fragment_matches) valid_dna_fragment_matches = test_fragment_matches[0:2] expected_ani = sum( map( lambda k: (k['alignment_length'] - k['no_non_identities']) / k[ 'alignment_length'], valid_dna_fragment_matches)) / len(valid_dna_fragment_matches) assert ani == expected_ani
def test_calculate_ani_empty(): # check ANI for empty test fragment matches ani = ra.calculate_ani([]) expected_ani = 0.0 assert ani == expected_ani
def test_calculate_ani_unvalid(test_fragment_matches): # check ANI for *unvalid* test fragment matches test_fragment_matches = test_fragment_matches[2:] ani = ra.calculate_ani(test_fragment_matches) expected_ani = 0.0 assert ani == expected_ani