示例#1
0
def check(name,data,target,origin=False,tol=2e-16):
    """
    name   data set name
    data   [y,x]
    target [p,dp] but low to high rather than high to low
    """
    p = wpolyfit(data[:,1],data[:,0],degree=target.shape[0]-1,origin=origin)
    Ep,Edp = N.flipud(target).T
    show_result(name,p.coeff,p.std,Ep,Edp,tol=tol)
示例#2
0
def check_uncertainty(n=10000):
    """
    This function computes a number of fits to simulated data
    to determine how well the values and uncertainties reported
    by the wpolyfit solver correspond to individual fits of the data.

    For large N the reported parameters do indeed converge to the mean
    parameter values for fits to resampled data.  Reported parameter
    uncertainty estimates are not supported by MC.
    """
    ##          x         y          dy
    data = N.matrix("""
        0.0013852  0.2144023  0.020470;
        0.0018469  0.2516856  0.022868;
        0.0023087  0.3070443  0.026362;
        0.0027704  0.3603186  0.029670;
        0.0032322  0.4260864  0.033705;
        0.0036939  0.4799956  0.036983
        """).A
    x,y,dy=data[:,0],data[:,1],data[:,2]
    if True: # simpler system to analyze
        x = N.linspace(2,4,12)
        y = 3*x+5
        dy = y
    p = wpolyfit(x,y,dy=dy,degree=1)
    P=N.empty((2,n),'d')
    for i in xrange(n):
        #pi = N.polyfit(x,N.random.normal(y,dy),degree=1)
        pi = wpolyfit(x,N.random.normal(y,dy),dy=dy,degree=1)
        P[:,i] = pi.coeff
    #print "P",P
    Ep,Edp = N.mean(P,1),N.std(P,1)
    show_result("uncertainty check",p.coeff,p.std,Ep,Edp)

    if False:
        import pylab
        pylab.hist(P[0,:])
        pylab.show()
    """ # Not yet converted from octave