示例#1
0
    def test_multipledataset_corefinement(self):
        # test corefinement of three datasets
        data361 = ReflectDataset(os.path.join(self.pth, 'e361r.txt'))
        data365 = ReflectDataset(os.path.join(self.pth, 'e365r.txt'))
        data366 = ReflectDataset(os.path.join(self.pth, 'e366r.txt'))

        si = SLD(2.07, name='Si')
        sio2 = SLD(3.47, name='SiO2')
        d2o = SLD(6.36, name='d2o')
        h2o = SLD(-0.56, name='h2o')
        cm3 = SLD(3.47, name='cm3')
        polymer = SLD(1, name='polymer')

        structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3)
        structure365 = si | structure361[1] | structure361[2] | cm3(0, 3)
        structure366 = si | structure361[1] | structure361[2] | h2o(0, 3)

        structure365[-1].rough = structure361[-1].rough
        structure366[-1].rough = structure361[-1].rough

        structure361[1].thick.setp(vary=True, bounds=(0, 20))
        structure361[2].thick.setp(value=200., bounds=(200., 250.), vary=True)
        structure361[2].sld.real.setp(vary=True, bounds=(0, 2))
        structure361[2].vfsolv.setp(value=5., bounds=(0., 100.), vary=True)

        model361 = ReflectModel(structure361, bkg=2e-5)
        model365 = ReflectModel(structure365, bkg=2e-5)
        model366 = ReflectModel(structure366, bkg=2e-5)

        model361.bkg.setp(vary=True, bounds=(1e-6, 5e-5))
        model365.bkg.setp(vary=True, bounds=(1e-6, 5e-5))
        model366.bkg.setp(vary=True, bounds=(1e-6, 5e-5))

        objective361 = Objective(model361, data361)
        objective365 = Objective(model365, data365)
        objective366 = Objective(model366, data366)

        global_objective = GlobalObjective(
            [objective361, objective365, objective366])
        # are the right numbers of parameters varying?
        assert_equal(len(global_objective.varying_parameters()), 7)

        # can we set the parameters?
        global_objective.setp(np.array([1e-5, 10, 212, 1, 10, 1e-5, 1e-5]))

        f = CurveFitter(global_objective)
        f.fit()

        indiv_chisqr = np.sum(
            [objective.chisqr() for objective in global_objective.objectives])

        # the overall chi2 should be sum of individual chi2
        global_chisqr = global_objective.chisqr()
        assert_almost_equal(global_chisqr, indiv_chisqr)

        # now check that the parameters were held in common correctly.
        slabs361 = structure361.slabs()
        slabs365 = structure365.slabs()
        slabs366 = structure366.slabs()

        assert_equal(slabs365[0:2, 0:5], slabs361[0:2, 0:5])
        assert_equal(slabs366[0:2, 0:5], slabs361[0:2, 0:5])
        assert_equal(slabs365[-1, 3], slabs361[-1, 3])
        assert_equal(slabs366[-1, 3], slabs361[-1, 3])

        # check that the residuals are the correct lengths
        res361 = objective361.residuals()
        res365 = objective365.residuals()
        res366 = objective366.residuals()
        res_global = global_objective.residuals()
        assert_allclose(res_global[0:len(res361)], res361, rtol=1e-5)
        assert_allclose(res_global[len(res361):len(res361) + len(res365)],
                        res365,
                        rtol=1e-5)
        assert_allclose(res_global[len(res361) + len(res365):],
                        res366,
                        rtol=1e-5)

        repr(global_objective)
示例#2
0
fig = plt.figure(figsize=(5, 25 / 6))
gs = mpl.gridspec.GridSpec(1, 3)
ax1 = plt.subplot(gs[0, 0:2])
ax2 = plt.subplot(gs[0, 2])
abc = {'dspc_20': '(a)', 'dspc_30': '(a)', 'dspc_40': '(a)', 'dspc_50': '(a)'}
chi = np.zeros((7))
for i in range(len(cont)):
    choose = global_objective.pgen(ngen=100)
    ax1.errorbar(datasets[i].x,
                 datasets[i].y * (datasets[i].x)**4 * 10**(i - 1),
                 yerr=datasets[i].y_err * (datasets[i].x)**4 * 10**(i - 1),
                 linestyle='',
                 marker='o',
                 color=sns.color_palette()[i])
    for pvec in choose:
        global_objective.setp(pvec)
        ax1.plot(datasets[i].x,
                 models[i](datasets[i].x, x_err=datasets[i].x_err) *
                 (datasets[i].x)**4 * 10**(i - 1),
                 color=sns.color_palette()[i],
                 alpha=0.1)
        zs, sld = structures[i].sld_profile()
        if zs.min() > -20:
            x2 = np.linspace(-20, zs.min(), 100)
            zs = np.append(x2, zs)
            y2 = np.zeros_like(x2)
            sld = np.append(y2, sld)
        if zs.max() < 80:
            x3 = np.linspace(zs.max(), 81, 100)
            y3 = np.ones_like(x3) * sld[-1]
            zs = np.append(zs, x3)