def _reduce_single_angle(self, scale=1): """ Reduce a single angle. """ n_spectra = self.reflected_beam.n_spectra n_tpixels = np.size(self.reflected_beam.m_topandtail, 1) n_ypixels = np.size(self.reflected_beam.m_topandtail, 2) # calculate omega and two_theta depending on the mode. mode = self.reflected_beam.mode # we'll need the wavelengths to calculate Q. wavelengths = self.reflected_beam.m_lambda m_twotheta = np.zeros((n_spectra, n_tpixels, n_ypixels)) detector_z_difference = (self.reflected_beam.detector_z - self.direct_beam.detector_z) beampos_z_difference = (self.reflected_beam.m_beampos - self.direct_beam.m_beampos) Y_PIXEL_SPACING = self.reflected_beam.cat.y_pixels_per_mm[0] total_z_deflection = (detector_z_difference + beampos_z_difference * Y_PIXEL_SPACING) if mode in ['FOC', 'POL', 'POLANAL', 'MT']: # omega_nom.shape = (N, ) omega_nom = np.degrees( np.arctan(total_z_deflection / self.reflected_beam.detector_y) / 2.) ''' Wavelength specific angle of incidence correction This involves: 1) working out the trajectory of the neutrons through the collimation system. 2) where those neutrons intersect the sample. 3) working out the elevation of the neutrons when they hit the sample. 4) correcting the angle of incidence. ''' speeds = general.wavelength_velocity(wavelengths) collimation_distance = self.reflected_beam.cat.collimation_distance s2_sample_distance = (self.reflected_beam.cat.sample_distance - self.reflected_beam.cat.slit2_distance) # work out the trajectories of the neutrons for them to pass # through the collimation system. trajectories = find_trajectory(collimation_distance / 1000., 0, speeds) # work out where the beam hits the sample res = parabola_line_intersection_point(s2_sample_distance / 1000, 0, trajectories, speeds, omega_nom[:, np.newaxis]) intersect_x, intersect_y, x_prime, elevation = res # correct the angle of incidence with a wavelength dependent # elevation. omega_corrected = omega_nom[:, np.newaxis] - elevation m_twotheta += np.arange(n_ypixels * 1.)[np.newaxis, np.newaxis, :] m_twotheta -= self.direct_beam.m_beampos[:, np.newaxis, np.newaxis] m_twotheta *= Y_PIXEL_SPACING m_twotheta += detector_z_difference m_twotheta /= (self.reflected_beam.detector_y[:, np.newaxis, np.newaxis]) m_twotheta = np.arctan(m_twotheta) m_twotheta = np.degrees(m_twotheta) # you may be reflecting upside down, reverse the sign. upside_down = np.sign(omega_corrected[:, 0]) m_twotheta *= upside_down[:, np.newaxis, np.newaxis] omega_corrected *= upside_down[:, np.newaxis] elif mode in ['SB', 'DB']: # the angle of incidence is half the two theta of the reflected # beam omega = np.arctan( total_z_deflection / self.reflected_beam.detector_y) / 2. # work out two theta for each of the detector pixels m_twotheta += np.arange(n_ypixels * 1.)[np.newaxis, np.newaxis, :] m_twotheta -= self.direct_beam.m_beampos[:, np.newaxis, np.newaxis] m_twotheta += detector_z_difference m_twotheta -= ( self.reflected_beam.detector_y[:, np.newaxis, np.newaxis] * np.tan(omega[:, np.newaxis, np.newaxis])) m_twotheta /= (self.reflected_beam.detector_y[:, np.newaxis, np.newaxis]) m_twotheta = np.arctan(m_twotheta) m_twotheta += omega[:, np.newaxis, np.newaxis] # still in radians at this point # add an extra dimension, because omega_corrected needs to be the # angle of incidence for each wavelength. I.e. should be # broadcastable to (N, T) omega_corrected = np.degrees(omega)[:, np.newaxis] m_twotheta = np.degrees(m_twotheta) ''' --Specular Reflectivity-- Use the (constant wavelength) spectra that have already been integrated over 2theta (in processnexus) to calculate the specular reflectivity. Beware: this is because m_topandtail has already been divided through by monitor counts and error propagated (at the end of processnexus). Thus, the 2theta pixels are correlated to some degree. If we use the 2D plot to calculate reflectivity (sum {Iref_{2theta, lambda}}/I_direct_{lambda}) then the error bars in the reflectivity turn out much larger than they should be. ''' ydata, ydata_sd = EP.EPdiv(self.reflected_beam.m_spec, self.reflected_beam.m_spec_sd, self.direct_beam.m_spec, self.direct_beam.m_spec_sd) # calculate the 1D Qz values. xdata = general.q(omega_corrected, wavelengths) xdata_sd = (self.reflected_beam.m_lambda_fwhm / self.reflected_beam.m_lambda)**2 xdata_sd += (self.reflected_beam.domega[:, np.newaxis] / omega_corrected)**2 xdata_sd = np.sqrt(xdata_sd) * xdata ''' ---Offspecular reflectivity--- normalise the counts in the reflected beam by the direct beam spectrum this gives a reflectivity. Also propagate the errors, leaving the fractional variance (dr/r)^2. --Note-- that adjacent y-pixels (same wavelength) are correlated in this treatment, so you can't just sum over them. i.e. (c_0 / d) + ... + c_n / d) != (c_0 + ... + c_n) / d ''' m_ref, m_ref_sd = EP.EPdiv( self.reflected_beam.m_topandtail, self.reflected_beam.m_topandtail_sd, self.direct_beam.m_spec[:, :, np.newaxis], self.direct_beam.m_spec_sd[:, :, np.newaxis]) # you may have had divide by zero's. m_ref = np.where(np.isinf(m_ref), 0, m_ref) m_ref_sd = np.where(np.isinf(m_ref_sd), 0, m_ref_sd) # calculate the Q values for the detector pixels. Each pixel has # different 2theta and different wavelength, ASSUME that they have the # same angle of incidence qx, qy, qz = general.q2(omega_corrected[:, :, np.newaxis], m_twotheta, 0, wavelengths[:, :, np.newaxis]) reduction = {} reduction['x'] = self.x = xdata reduction['x_err'] = self.x_err = xdata_sd reduction['y'] = self.y = ydata / scale reduction['y_err'] = self.y_err = ydata_sd / scale reduction['omega'] = omega_corrected reduction['m_twotheta'] = m_twotheta reduction['m_ref'] = self.m_ref = m_ref reduction['m_ref_err'] = self.m_ref_err = m_ref_sd reduction['qz'] = self.m_qz = qz reduction['qx'] = self.m_qx = qx reduction['nspectra'] = self.n_spectra = n_spectra reduction['start_time'] = self.reflected_beam.start_time reduction['datafile_number'] = self.datafile_number = ( self.reflected_beam.datafile_number) fnames = [] datasets = [] datafilename = self.reflected_beam.datafilename datafilename = os.path.basename(datafilename.split('.nx.hdf')[0]) for i in range(n_spectra): data_tup = self.data(scanpoint=i) datasets.append(ReflectDataset(data_tup)) if self.save: for i, dataset in enumerate(datasets): fname = '{0}_{1}.dat'.format(datafilename, i) fnames.append(fname) with open(fname, 'wb') as f: dataset.save(f) fname = '{0}_{1}.xml'.format(datafilename, i) with open(fname, 'wb') as f: dataset.save_xml(f, start_time=reduction['start_time'][i]) reduction['fname'] = fnames return datasets, deepcopy(reduction)
def _reduce_single_angle(self, scale=1): """ Reduce a single angle. """ n_spectra = self.reflected_beam.n_spectra n_tpixels = np.size(self.reflected_beam.m_topandtail, 1) n_xpixels = np.size(self.reflected_beam.m_topandtail, 2) # we'll need the wavelengths to calculate Q. wavelengths = self.reflected_beam.m_lambda m_twotheta = np.zeros((n_spectra, n_tpixels, n_xpixels)) detrot_difference = (self.reflected_beam.detector_z - self.direct_beam.detector_z) # difference in pixels between reflected position and direct beam # at the two different detrots. QZ_PIXEL_SPACING = self.reflected_beam.cat.qz_pixel_size[0] dy = self.reflected_beam.detector_y # convert that pixel difference to angle (in small angle approximation) # higher `som` leads to lower m_beampos. i.e. higher two theta # is at lower pixel values beampos_2theta_diff = -(self.reflected_beam.m_beampos - self.direct_beam.m_beampos) beampos_2theta_diff *= QZ_PIXEL_SPACING / dy[0] beampos_2theta_diff = np.degrees(beampos_2theta_diff) total_2theta_deflection = detrot_difference + beampos_2theta_diff # omega_nom.shape = (N, ) omega_nom = total_2theta_deflection / 2.0 omega_corrected = omega_nom[:, np.newaxis] m_twotheta += np.arange(n_xpixels * 1.0)[np.newaxis, np.newaxis, :] m_twotheta -= self.direct_beam.m_beampos[:, np.newaxis, np.newaxis] # minus sign in following line because higher two theta is at lower # pixel values m_twotheta *= -QZ_PIXEL_SPACING / dy[:, np.newaxis, np.newaxis] m_twotheta = np.degrees(m_twotheta) m_twotheta += detrot_difference # you may be reflecting upside down, reverse the sign. upside_down = np.sign(omega_corrected[:, 0]) m_twotheta *= upside_down[:, np.newaxis, np.newaxis] omega_corrected *= upside_down[:, np.newaxis] """ --Specular Reflectivity-- Use the (constant wavelength) spectra that have already been integrated over 2theta (in processnexus) to calculate the specular reflectivity. Beware: this is because m_topandtail has already been divided through by monitor counts and error propagated (at the end of processnexus). Thus, the 2theta pixels are correlated to some degree. If we use the 2D plot to calculate reflectivity (sum {Iref_{2theta, lambda}}/I_direct_{lambda}) then the error bars in the reflectivity turn out much larger than they should be. """ ydata, ydata_sd = EP.EPdiv( self.reflected_beam.m_spec, self.reflected_beam.m_spec_sd, self.direct_beam.m_spec, self.direct_beam.m_spec_sd, ) # calculate the 1D Qz values. xdata = general.q(omega_corrected, wavelengths) xdata_sd = (self.reflected_beam.m_lambda_fwhm / self.reflected_beam.m_lambda)**2 xdata_sd += (self.reflected_beam.domega[:, np.newaxis] / omega_corrected)**2 xdata_sd = np.sqrt(xdata_sd) * xdata """ ---Offspecular reflectivity--- normalise the counts in the reflected beam by the direct beam spectrum this gives a reflectivity. Also propagate the errors, leaving the fractional variance (dr/r)^2. --Note-- that adjacent y-pixels (same wavelength) are correlated in this treatment, so you can't just sum over them. i.e. (c_0 / d) + ... + c_n / d) != (c_0 + ... + c_n) / d """ m_ref, m_ref_sd = EP.EPdiv( self.reflected_beam.m_topandtail, self.reflected_beam.m_topandtail_sd, self.direct_beam.m_spec[:, :, np.newaxis], self.direct_beam.m_spec_sd[:, :, np.newaxis], ) # you may have had divide by zero's. m_ref = np.where(np.isinf(m_ref), 0, m_ref) m_ref_sd = np.where(np.isinf(m_ref_sd), 0, m_ref_sd) # calculate the Q values for the detector pixels. Each pixel has # different 2theta and different wavelength, ASSUME that they have the # same angle of incidence qx, qy, qz = general.q2( omega_corrected[:, :, np.newaxis], m_twotheta, 0, wavelengths[:, :, np.newaxis], ) reduction = {} reduction["x"] = self.x = xdata reduction["x_err"] = self.x_err = xdata_sd reduction["y"] = self.y = ydata / scale reduction["y_err"] = self.y_err = ydata_sd / scale reduction["omega"] = omega_corrected reduction["m_twotheta"] = m_twotheta reduction["m_ref"] = self.m_ref = m_ref reduction["m_ref_err"] = self.m_ref_err = m_ref_sd reduction["qz"] = self.m_qz = qz reduction["qx"] = self.m_qx = qx reduction["nspectra"] = self.n_spectra = n_spectra reduction["start_time"] = self.reflected_beam.start_time reduction[ "datafile_number"] = self.datafile_number = self.reflected_beam.datafile_number fnames = [] datasets = [] datafilename = self.reflected_beam.datafilename datafilename = os.path.basename(datafilename.split(".nx.hdf")[0]) for i in range(n_spectra): data_tup = self.data(scanpoint=i) datasets.append(ReflectDataset(data_tup)) if self.save: for i, dataset in enumerate(datasets): fname = "{0}_{1}.dat".format(datafilename, i) fnames.append(fname) with open(fname, "wb") as f: dataset.save(f) fname = "{0}_{1}.xml".format(datafilename, i) with open(fname, "wb") as f: dataset.save_xml(f, start_time=reduction["start_time"][i]) reduction["fname"] = fnames return datasets, deepcopy(reduction)
def _reduce_single_angle(self, scale=1): """ Reduce a single angle. """ n_spectra = self.reflected_beam.n_spectra n_tpixels = np.size(self.reflected_beam.m_topandtail, 1) n_ypixels = np.size(self.reflected_beam.m_topandtail, 2) # calculate omega and two_theta depending on the mode. mode = self.reflected_beam.mode # we'll need the wavelengths to calculate Q. wavelengths = self.reflected_beam.m_lambda m_twotheta = np.zeros((n_spectra, n_tpixels, n_ypixels)) if mode in ['FOC', 'POL', 'POLANAL', 'MT']: detector_z_difference = (self.reflected_beam.detector_z - self.direct_beam.detector_z) beampos_z_difference = (self.reflected_beam.m_beampos - self.direct_beam.m_beampos) total_z_deflection = (detector_z_difference + beampos_z_difference * Y_PIXEL_SPACING) # omega_nom.shape = (N, ) omega_nom = np.degrees(np.arctan(total_z_deflection / self.reflected_beam.detector_y) / 2.) ''' Wavelength specific angle of incidence correction This involves: 1) working out the trajectory of the neutrons through the collimation system. 2) where those neutrons intersect the sample. 3) working out the elevation of the neutrons when they hit the sample. 4) correcting the angle of incidence. ''' speeds = general.wavelength_velocity(wavelengths) collimation_distance = self.reflected_beam.cat.collimation_distance s2_sample_distance = (self.reflected_beam.cat.sample_distance - self.reflected_beam.cat.slit2_distance) # work out the trajectories of the neutrons for them to pass # through the collimation system. trajectories = pm.find_trajectory(collimation_distance / 1000., 0, speeds) # work out where the beam hits the sample res = pm.parabola_line_intersection_point(s2_sample_distance / 1000, 0, trajectories, speeds, omega_nom[:, np.newaxis]) intersect_x, intersect_y, x_prime, elevation = res # correct the angle of incidence with a wavelength dependent # elevation. omega_corrected = omega_nom[:, np.newaxis] - elevation elif mode == 'SB' or mode == 'DB': omega = self.reflected_beam.M_beampos + self.reflected_beam.detectorZ[:, np.newaxis] omega -= self.direct_beam.M_beampos + self.direct_beam.detectorZ omega /= 2 * self.reflected_beam.detectorY[:, np.newaxis, np.newaxis] omega = np.arctan(omega) m_twotheta += np.arange(n_ypixels * 1.)[np.newaxis, np.newaxis, :] * Y_PIXEL_SPACING m_twotheta += self.reflected_beam.detectorZ[:, np.newaxis, np.newaxis] m_twotheta -= self.direct_beam.M_beampos[:, :, np.newaxis] + self.direct_beam.detectorZ m_twotheta -= self.reflected_beam.detectorY[:, np.newaxis, np.newaxis] * np.tan(omega[:, :, np.newaxis]) m_twotheta /= self.reflected_beam.detectorY[:, np.newaxis, np.newaxis] m_twotheta = np.arctan(m_twotheta) m_twotheta += omega[:, :, np.newaxis] ''' --Specular Reflectivity-- Use the (constant wavelength) spectra that have already been integrated over 2theta (in processnexus) to calculate the specular reflectivity. Beware: this is because m_topandtail has already been divided through by monitor counts and error propagated (at the end of processnexus). Thus, the 2theta pixels are correlated to some degree. If we use the 2D plot to calculate reflectivity (sum {Iref_{2theta, lambda}}/I_direct_{lambda}) then the error bars in the reflectivity turn out much larger than they should be. ''' ydata, ydata_sd = EP.EPdiv(self.reflected_beam.m_spec, self.reflected_beam.m_spec_sd, self.direct_beam.m_spec, self.direct_beam.m_spec_sd) # calculate the 1D Qz values. xdata = general.q(omega_corrected, wavelengths) xdata_sd = (self.reflected_beam.m_lambda_fwhm / self.reflected_beam.m_lambda) ** 2 xdata_sd += (self.reflected_beam.domega[:, np.newaxis] / omega_corrected) ** 2 xdata_sd = np.sqrt(xdata_sd) * xdata ''' ---Offspecular reflectivity--- normalise the counts in the reflected beam by the direct beam spectrum this gives a reflectivity. Also propagate the errors, leaving the fractional variance (dr/r)^2. --Note-- that adjacent y-pixels (same wavelength) are correlated in this treatment, so you can't just sum over them. i.e. (c_0 / d) + ... + c_n / d) != (c_0 + ... + c_n) / d ''' m_ref, m_ref_sd = EP.EPdiv(self.reflected_beam.m_topandtail, self.reflected_beam.m_topandtail_sd, self.direct_beam.m_spec[:, :, np.newaxis], self.direct_beam.m_spec_sd[:, :, np.newaxis]) # you may have had divide by zero's. m_ref = np.where(np.isinf(m_ref), 0, m_ref) m_ref_sd = np.where(np.isinf(m_ref_sd), 0, m_ref_sd) # calculate the Q values for the detector pixels. Each pixel has # different 2theta and different wavelength, ASSUME that they have the # same angle of incidence qx, qy, qz = general.q2(omega_corrected[:, :, np.newaxis], m_twotheta, 0, wavelengths[:, :, np.newaxis]) reduction = {} reduction['xdata'] = self.xdata = xdata reduction['xdata_sd'] = self.xdata_sd = xdata_sd reduction['ydata'] = self.ydata = ydata reduction['ydata_sd'] = self.ydata_sd = ydata_sd reduction['m_ref'] = self.m_ref = m_ref reduction['m_ref_sd'] = self.m_ref_sd = m_ref_sd reduction['qz'] = self.m_qz = qz reduction['qy'] = self.m_qy = qy reduction['nspectra'] = self.n_spectra = n_spectra reduction['datafile_number'] = self.datafile_number = ( self.reflected_beam.datafile_number) fnames = [] if self.save: for i in range(n_spectra): data_tup = self.data(scanpoint=i) dataset = ReflectDataset(data_tup) fname = 'PLP{0:07d}_{1}.dat'.format(self.datafile_number, i) fnames.append(fname) with open(fname, 'wb') as f: dataset.save(f) fname = 'PLP{0:07d}_{1}.xml'.format(self.datafile_number, i) with open(fname, 'wb') as f: dataset.save_xml(f) reduction['fname'] = fnames return deepcopy(reduction)
def reduce_xrdml(f, bkg=None, scale=None, sample_length=None): """ Reduces a Panalytical XRDML file Parameters ---------- f: file-like object or string The specular reflectivity (XRDML) file of interest bkg: list A list of file-like objects or strings that contain background measurements. The background is assumed to have the same number of points as the specular reflectivity curve. The backgrounds are averaged and subtracted from the specular reflectivity scale: float, None The direct beam intensity (cps). If `scale is None` then the dataset is scaled by the point with maximum intensity below Q = 0.0318 (Q_crit for Si at 8.048 keV). sample_length: None or float If None then no footprint correction is done. Otherwise the transverse footprint of the sample (mm). Returns ------- dataset: refnx.dataset.ReflectDataset The specular reflectivity as a function of momentum transfer, Q. """ spec = parse_xrdml_file(f) reflectivity = spec["intensities"] / spec["count_time"] reflectivity_s = np.sqrt(reflectivity) / spec["count_time"] # do the background subtraction if bkg is not None: bkgds = [parse_xrdml_file(fi) for fi in bkg] bkgd_refs = np.r_[[bkgd["intensities"] for bkgd in bkgds]] bkgd_refs_s = np.r_[[ np.sqrt(bkgd["intensities"]) / bkgd["count_time"] for bkgd in bkgds ]] bkgd_refs_var = bkgd_refs_s**2 weights = 1.0 / bkgd_refs_var numerator = np.sum(bkgd_refs * weights, axis=0) denominator = np.sum(weights, axis=0) total_bkgd = numerator / denominator total_bkgd_s = np.sqrt(1 / denominator) reflectivity, reflectivity_s = EP.EPsub(reflectivity, reflectivity_s, total_bkgd, total_bkgd_s) # work out the Q values qx, qy, qz = general.q2( spec["omega"], spec["twotheta"], np.zeros_like(spec["omega"]), spec["wavelength"], ) # do a footprint correction if sample_length is not None: footprint_correction = general.beamfrac( np.array([XRR_BEAMWIDTH_SD]) * 2.35, np.array([sample_length]), spec["omega"], ) reflectivity /= footprint_correction reflectivity_s /= footprint_correction # divide by the direct beam intensity # assumes that the direct beam intensity is enormous, so the counting # uncertainties in the scale factor are negligible. if scale is None: # no scale factor was specifed, so normalise by highest intensity point # below Qc for Silicon at 8.048 keV below_qc = qz[qz < 0.0318] if len(below_qc): scale = np.max(reflectivity[qz < 0.0318]) reflectivity /= scale reflectivity_s /= scale d = ReflectDataset(data=(qz, reflectivity, reflectivity_s)) return d
def process_offspec(f): """ Process a 2D XRDML file and return qx, qz, intensity, dintensity Parameters ---------- f: str or file-like Returns ------- qx, qz, intensity, dintensity """ x = et.parse(f) root = x.getroot() ns = {"xrdml": "http://www.xrdml.com/XRDMeasurement/1.0"} query = { "intensities": ".//xrdml:intensities", "twotheta_start": ".//xrdml:positions[@axis='2Theta']" "/xrdml:startPosition", "twotheta_end": ".//xrdml:positions[@axis='2Theta']" "/xrdml:endPosition", "omega_start": ".//xrdml:positions[@axis='Omega']" "/xrdml:startPosition", "omega_end": ".//xrdml:positions[@axis='Omega']" "/xrdml:endPosition", "cnt_time": ".//xrdml:commonCountingTime", "kAlpha1": ".//xrdml:kAlpha1", "kAlpha2": ".//xrdml:kAlpha2", "ratio": ".//xrdml:ratioKAlpha2KAlpha1", } res = {key: root.findall(value, ns) for key, value in query.items()} kAlpha1 = float(res["kAlpha1"][0].text) kAlpha2 = float(res["kAlpha2"][0].text) ratio = float(res["ratio"][0].text) wavelength = (kAlpha1 + ratio * kAlpha2) / (1 + ratio) intensity = [ np.fromstring(ints.text, sep=" ") for ints in res["intensities"] ] twotheta_starts = np.array( [np.fromstring(ints.text, sep=" ") for ints in res["twotheta_start"]]) twotheta_ends = np.array( [np.fromstring(ints.text, sep=" ") for ints in res["twotheta_end"]]) omega_starts = np.array( [np.fromstring(ints.text, sep=" ") for ints in res["omega_start"]]) omega_ends = np.array( [np.fromstring(ints.text, sep=" ") for ints in res["omega_end"]]) cnt_time = np.array( [np.fromstring(ints.text, sep=" ") for ints in res["cnt_time"]]) intensity = np.array(intensity) dintensity = np.sqrt(intensity) / cnt_time intensity /= cnt_time omegas = [] two_thetas = [] for i in range(len(intensity)): omega = np.linspace(omega_starts[i], omega_ends[i], np.size(intensity, 1)) omegas.append(omega) two_theta = np.linspace(twotheta_starts[i], twotheta_ends[i], np.size(intensity, 1)) two_thetas.append(two_theta) omega = np.array(omegas) twotheta = np.array(two_thetas) qx, qy, qz = general.q2(omega, twotheta, 0, wavelength) return qx, qz, intensity, dintensity
def test_q2(self): qx, qy, qz = general.q2(1., 2., 0., 2.) assert_almost_equal(qz, 0.1096567037)
def reduce_xrdml(f, bkg=None, scale=1, sample_length=None): """ Reduces a Panalytical XRDML file Parameters ---------- f: file-like object or string The specular reflectivity (XRDML) file of interest bkg: list A list of file-like objects or strings that contain background measurements. The background is assumed to have the same number of points as the specular reflectivity curve. The backgrounds are averaged and subtracted from the specular reflectivity scale: float The direct beam intensity (cps) sample_length: None or float If None then no footprint correction is done. Otherwise the transverse footprint of the sample (mm). Returns ------- specular_q, specular_r, specular_dr: np.ndarray The specular reflectivity as a function of momentum transfer, Q. """ spec = parse_xrdml_file(f) reflectivity = spec['intensities'] / spec['count_time'] reflectivity_s = np.sqrt(reflectivity) / spec['count_time'] # do the background subtraction if bkg is not None: bkgds = [parse_xrdml_file(fi) for fi in bkg] bkgd_refs = np.r_[[bkgd['intensities'] for bkgd in bkgds]] bkgd_refs_s = np.r_[[np.sqrt(bkgd['intensities']) / bkgd['count_time'] for bkgd in bkgds]] bkgd_refs_var = bkgd_refs_s ** 2 weights = 1. / bkgd_refs_var numerator = np.sum(bkgd_refs * weights, axis=0) denominator = np.sum(weights, axis=0) total_bkgd = numerator / denominator total_bkgd_s = np.sqrt(1 / denominator) reflectivity, reflectivity_s = EP.EPsub(reflectivity, reflectivity_s, total_bkgd, total_bkgd_s) # work out the Q values qx, qy, qz = general.q2(spec['omega'], spec['twotheta'], np.zeros_like(spec['omega']), spec['wavelength']) # do a footprint correction if sample_length is not None: footprint_correction = general.beamfrac(np.array([XRR_BEAMWIDTH_SD]) * 2.35, np.array([sample_length]), spec['omega']) reflectivity /= footprint_correction reflectivity_s /= footprint_correction # divide by the direct beam intensity # assumes that the direct beam intensity is enormous, so the counting # uncertainties in the scale factor are negligible. reflectivity /= scale reflectivity_s /= scale return qz, reflectivity, reflectivity_s
def process_offspec(f): """ Process a 2D XRDML file and return qx, qz, intensity, dintensity Parameters ---------- f: str or file-like Returns ------- qx, qz, intensity, dintensity """ x = et.parse(f) root = x.getroot() ns = {'xrdml': 'http://www.xrdml.com/XRDMeasurement/1.0'} query = { 'intensities': './/xrdml:intensities', 'twotheta_start': './/xrdml:positions[@axis=\'2Theta\']' '/xrdml:startPosition', 'twotheta_end': './/xrdml:positions[@axis=\'2Theta\']' '/xrdml:endPosition', 'omega_start': './/xrdml:positions[@axis=\'Omega\']' '/xrdml:startPosition', 'omega_end': './/xrdml:positions[@axis=\'Omega\']' '/xrdml:endPosition', 'cnt_time': './/xrdml:commonCountingTime', 'kAlpha1': './/xrdml:kAlpha1', 'kAlpha2': './/xrdml:kAlpha2', 'ratio': './/xrdml:ratioKAlpha2KAlpha1' } res = {key: root.findall(value, ns) for key, value in query.items()} kAlpha1 = float(res['kAlpha1'][0].text) kAlpha2 = float(res['kAlpha2'][0].text) ratio = float(res['ratio'][0].text) wavelength = (kAlpha1 + ratio * kAlpha2) / (1 + ratio) intensity = [ np.fromstring(ints.text, sep=' ') for ints in res['intensities'] ] twotheta_starts = np.array( [np.fromstring(ints.text, sep=' ') for ints in res['twotheta_start']]) twotheta_ends = np.array( [np.fromstring(ints.text, sep=' ') for ints in res['twotheta_end']]) omega_starts = np.array( [np.fromstring(ints.text, sep=' ') for ints in res['omega_start']]) omega_ends = np.array( [np.fromstring(ints.text, sep=' ') for ints in res['omega_end']]) cnt_time = np.array( [np.fromstring(ints.text, sep=' ') for ints in res['cnt_time']]) intensity = np.array(intensity) dintensity = np.sqrt(intensity) / cnt_time intensity /= cnt_time omegas = [] two_thetas = [] for i in range(len(intensity)): omega = np.linspace(omega_starts[i], omega_ends[i], np.size(intensity, 1)) omegas.append(omega) two_theta = np.linspace(twotheta_starts[i], twotheta_ends[i], np.size(intensity, 1)) two_thetas.append(two_theta) omega = np.array(omegas) twotheta = np.array(two_thetas) qx, qy, qz = general.q2(omega, twotheta, 0, wavelength) return qx, qz, intensity, dintensity
def reduce_xrdml(f, bkg=None, scale=1, sample_length=None): """ Reduces a Panalytical XRDML file Parameters ---------- f: file-like object or string The specular reflectivity (XRDML) file of interest bkg: list A list of file-like objects or strings that contain background measurements. The background is assumed to have the same number of points as the specular reflectivity curve. The backgrounds are averaged and subtracted from the specular reflectivity scale: float The direct beam intensity (cps) sample_length: None or float If None then no footprint correction is done. Otherwise the transverse footprint of the sample (mm). Returns ------- specular_q, specular_r, specular_dr: np.ndarray The specular reflectivity as a function of momentum transfer, Q. """ spec = parse_xrdml_file(f) reflectivity = spec['intensities'] / spec['count_time'] reflectivity_s = np.sqrt(reflectivity) / spec['count_time'] # do the background subtraction if bkg is not None: bkgds = [parse_xrdml_file(fi) for fi in bkg] bkgd_refs = np.r_[[bkgd['intensities'] for bkgd in bkgds]] bkgd_refs_s = np.r_[[ np.sqrt(bkgd['intensities']) / bkgd['count_time'] for bkgd in bkgds ]] bkgd_refs_var = bkgd_refs_s**2 weights = 1. / bkgd_refs_var numerator = np.sum(bkgd_refs * weights, axis=0) denominator = np.sum(weights, axis=0) total_bkgd = numerator / denominator total_bkgd_s = np.sqrt(1 / denominator) reflectivity, reflectivity_s = EP.EPsub(reflectivity, reflectivity_s, total_bkgd, total_bkgd_s) # work out the Q values qx, qy, qz = general.q2(spec['omega'], spec['twotheta'], np.zeros_like(spec['omega']), spec['wavelength']) # do a footprint correction if sample_length is not None: footprint_correction = general.beamfrac( np.array([XRR_BEAMWIDTH_SD]) * 2.35, np.array([sample_length]), spec['omega']) reflectivity /= footprint_correction reflectivity_s /= footprint_correction # divide by the direct beam intensity # assumes that the direct beam intensity is enormous, so the counting # uncertainties in the scale factor are negligible. reflectivity /= scale reflectivity_s /= scale return qz, reflectivity, reflectivity_s