示例#1
0
    def get_g4s_as_bed(self, seq, seq_id='unknown', use_bed12=True):
        '''
        query a sequence for G4s using G4Regex. Pass a seq_id to get fully
        formatted bed records.
        Predicted loops/tetrad positional information can be retained using
        bed12 format.
        '''

        for strand in '+-':
            for r in self._regex[strand]:
                for m in regex.finditer(r,
                                        seq,
                                        overlapped=True,
                                        *self._regex_flags):
                    if use_bed12:
                        yield self._format_bed12(m, seq_id, strand)
                    else:
                        yield self._format_bed6(m, seq_id, strand)
                # clear re cache to save memory
                regex.purge()
示例#2
0
def purge():
    """Purge caches."""

    _purge_cache()
    _regex.purge()
示例#3
0
文件: bregex.py 项目: vshalt/dotfiles
def purge():
    """Purge caches."""

    _purge_cache()
    _regex.purge()
    def consumer(ErrorBundle, currCount, TotalErrors):

        printProgress(TotalErrors, currCount)

        RIGHTCONTEXT = 1
        LEFTCONTEXT = 0
        global _MostProbablePos, _CurrentCorpus

        if not _CurrentCorpus:
            _CurrentCorpus = parallel_corpora.getCorpora('clean')

        getFullMatch = lambda matchObject, name: "".join(
            matchObject.captures(name))

        OCRError, nextOCRError = ErrorBundle

        if _MostProbablePos is None:
            _MostProbablePos = CD_avg() + OCRError.Position

        if OCRError in splitErrors_found._getvalue():
            _MostProbablePos = CD_avg() + nextOCRError.Position
            splitErrors_found.remove(OCRError)
            return None

        Error, OCRContext = OCRError.Error, OCRError.Context

        Left = _CurrentCorpus.find(OCRContext[0].lstrip())
        Right = _CurrentCorpus.find(OCRContext[1].rstrip())
        SEARCHPOS = None

        if Left != -1 and Right != -1:
            if 0 < (Right - Left) < 88:
                SEARCHPOS = int((Left + Right) / 2)

        DO_REG_SEARCH = True

        if nextOCRError.ID != ErrorContext.LAST_ERROR and \
                        abs( OCRError.Position - nextOCRError.Position ) <= len( Error ) + 2:

            start = OCRContext[RIGHTCONTEXT].find(nextOCRError.Error[0])
            ErrorSR = Error + OCRContext[
                RIGHTCONTEXT][:start] + nextOCRError.Error

            dictMatch = regex.search(
                r"(?P<match>^" + Error + nextOCRError.Error + r"$){1i<=1}",
                kwargs.get('WordList'), regex.MULTILINE)
            if dictMatch:
                with kwargs.get("splitErrors_lock"):
                    splitErrors_found.add(nextOCRError)

                X = OCRalignment(dictMatch.group('match'), ErrorSR,
                                 (OCRContext[0], nextOCRError.Context[1]),
                                 ("", ""), OCRError.ID, 'SPLITDICT')

                _MostProbablePos = CD_avg() + nextOCRError.Position

                if _DEBUG:
                    with kwargs.get("stream_lock"):
                        with open('printedData/Enchant/matched.txt',
                                  'a') as Aout:
                            Aout.write(str(X) + '\n')
                return X

            else:

                LeftS = _CurrentCorpus.find(OCRContext[0].lstrip())
                RightS = _CurrentCorpus.find(nextOCRError.Context[1].rstrip())
                SPLITSEARCHPOS = None

                if LeftS != -1 and RightS != -1:
                    if 0 < (RightS - LeftS) < 98:
                        SPLITSEARCHPOS = int((LeftS + RightS) / 2)

                rxSplitErrPattern = constructSplitErrorRegex(
                    Error, OCRContext, nextOCRError)

                split_search_itr = 0

                split_search_max = 250
                splitMatches = []
                countUpdate = False
                while split_search_itr < split_search_max:

                    corporaSliceObj = parallel_corpora.getCorporaSlice(
                        "clean", (SPLITSEARCHPOS if SPLITSEARCHPOS is not None
                                  else int(_MostProbablePos)),
                        split_search_itr)

                    if not corporaSliceObj['slice'] and split_search_itr > 4:
                        break

                    matchObjSplitErr = rxSplitErrPattern.search(
                        corporaSliceObj['slice'])

                    split_search_itr += 1

                    if not matchObjSplitErr:

                        if not split_search_itr % 13:
                            regex.purge()
                            gc.collect()

                    else:

                        matchObjSplitErr.detach_string()

                        splitMatches.append(
                            (matchObjSplitErr, corporaSliceObj))

                        if sum(matchObjSplitErr.fuzzy_counts, 0) < 4:
                            break

                        if not countUpdate:
                            if SPLITSEARCHPOS is not None:
                                split_search_max = split_search_itr
                            else:
                                split_search_max = split_search_itr + 14
                            countUpdate = True

                if splitMatches:

                    editDists = list(
                        map(lambda arg: sum(arg[0].fuzzy_counts, 0),
                            splitMatches))

                    correctMatch, SliceObj = splitMatches[editDists.index(
                        min(editDists))]

                    intendedWrdSR = getFullMatch(correctMatch, 'errorMatch')

                    clean_context = (SliceObj[ 'slice' ][ correctMatch.spans( 'errorMatch' )[ 0 ][ 0 ] - 25: \
                        correctMatch.spans( 'errorMatch' )[ 0 ][ 0 ] ],
                                     SliceObj[ 'slice' ][ correctMatch.spans( 'errorMatch' )[ -1 ][ 1 ]: \
                                         correctMatch.spans( 'errorMatch' )[ -1 ][ 1 ] + 21 ])

                    CurrMatchPos = _relativeToActual(
                        int(.5 * sum(correctMatch.span())), SliceObj['data'])

                    offset = CurrMatchPos - OCRError.Position

                    _CleanDirtyDiffs.append(offset)

                    _MostProbablePos = CD_avg() + nextOCRError.Position

                    with kwargs.get("splitErrors_lock"):
                        splitErrors_found.add(nextOCRError)

                    X = OCRalignment(intendedWrdSR, ErrorSR,
                                     (OCRContext[0], nextOCRError.Context[1]),
                                     clean_context, OCRError.ID, 'SPLIT')

                    if _DEBUG:
                        with kwargs.get("stream_lock"):
                            with open('printedData/Enchant/matched.txt',
                                      'a') as Aout:
                                Aout.write(str(X) + '\n')
                    return X
                else:
                    DO_REG_SEARCH = False

        else:

            splitL = OCRContext[0].split()
            if splitL:
                splitL = splitL[-1]
            else:
                splitL = None

            splitR = OCRContext[1].split()
            if splitR:
                splitR = splitR[0]
            else:
                splitR = None

            if splitR and splitR not in string.punctuation:

                _splitR = splitR if splitR[
                    -1] not in string.punctuation else splitR[:-1]
                _splitR = r"(?P<match>^" + Error + regex.escape(
                    _splitR) + r"$)"

                dictMatchR = (regex.search(_splitR, kwargs.get('WordList'),
                                           regex.MULTILINE)
                              if _splitR else None)

                if dictMatchR:

                    if OCRContext[RIGHTCONTEXT][0] == ' ':
                        SEP = ' '
                    else:
                        SEP = ''

                    X = OCRalignment(dictMatchR.group('match'),
                                     Error + SEP + splitR,
                                     (OCRContext[0], OCRContext[1]), ('', ''),
                                     OCRError.ID, 'SPLITDICT-R')

                    _MostProbablePos = CD_avg() + nextOCRError.Position

                    if _DEBUG:
                        with kwargs.get("stream_lock"):
                            with open('printedData/Enchant/matched.txt',
                                      'a') as Aout:
                                Aout.write(str(X) + '\n')
                    return X

            if splitL and splitL not in string.punctuation:

                _splitL = splitL if splitL[
                    0] not in string.punctuation else splitL[1:]
                _splitL = r"(?P<match>^" + regex.escape(
                    _splitL) + Error + r"$)"

                dictMatchL = (regex.search(_splitL, kwargs.get('WordList'),
                                           regex.MULTILINE)
                              if _splitL else None)

                if dictMatchL:

                    if OCRContext[LEFTCONTEXT][-1] == ' ':
                        SEP = ' '
                    else:
                        SEP = ''
                    X = OCRalignment(dictMatchL.group('match'),
                                     splitL + SEP + Error,
                                     (OCRContext[0], OCRContext[1]), ('', ''),
                                     OCRError.ID, 'SPLITDICT-L')

                    _MostProbablePos = CD_avg() + nextOCRError.Position

                    if _DEBUG:
                        with kwargs.get("stream_lock"):
                            with open('printedData/Enchant/matched.txt',
                                      'a') as Aout:
                                Aout.write(str(X) + '\n')
                    return X

        if DO_REG_SEARCH:

            rx = constructErrorRegex(Error, OCRContext)

            iteration = 0

            max_iteration = 250
            matches = []
            countUpdate2 = False

            while iteration < max_iteration:

                corporaSliceObj = parallel_corpora.getCorporaSlice(
                    "clean", (SEARCHPOS if SEARCHPOS is not None else
                              int(_MostProbablePos)), iteration)

                if not corporaSliceObj['slice'] and iteration > 4:
                    break

                matchObj = rx.search(corporaSliceObj['slice'])

                iteration += 1

                if not matchObj:
                    if not iteration % 13:
                        regex.purge()
                        gc.collect()
                else:

                    matchObj.detach_string()

                    matches.append((matchObj, corporaSliceObj))

                    if sum(matchObj.fuzzy_counts, 0) < 4:
                        break

                    if not countUpdate2:
                        if SEARCHPOS is not None:
                            max_iteration = iteration
                        else:
                            max_iteration = iteration + 14
                            countUpdate2 = True

            if matches:

                editDists = list(
                    map(lambda arg: sum(arg[0].fuzzy_counts, 0), matches))

                correctMatch, SliceObj = matches[editDists.index(
                    min(editDists))]

                intendedWord = getFullMatch(correctMatch, 'errorMatch')

                clean_context = (SliceObj[ 'slice' ][ correctMatch.spans( 'errorMatch' )[ 0 ][ 0 ] - 25: \
                    correctMatch.spans( 'errorMatch' )[ 0 ][ 0 ] ],
                                 SliceObj[ 'slice' ][ correctMatch.spans( 'errorMatch' )[ -1 ][ 1 ]: \
                                     correctMatch.spans( 'errorMatch' )[ -1 ][ 1 ] + 21 ])

                CurrMatchPos = _relativeToActual(
                    int(.5 * sum(correctMatch.span())), SliceObj['data'])

                offset = CurrMatchPos - OCRError.Position

                _CleanDirtyDiffs.append(offset)

                _MostProbablePos = CD_avg() + nextOCRError.Position

                X = OCRalignment(intendedWord, Error, OCRContext,
                                 clean_context, OCRError.ID, 'REG')

                if _DEBUG:
                    with kwargs.get("stream_lock"):
                        with open('printedData/Enchant/matched.txt',
                                  'a') as Aout:
                            Aout.write(str(X) + '\n')
                return X

        with kwargs.get("stream2_lock"):
            with open('printedData/Enchant/unmatched.txt', 'a') as Uout:
                Uout.write(str(OCRError) + "," + str(_MostProbablePos) + '\n')

        _MostProbablePos = CD_avg() + nextOCRError.Position

        return None