示例#1
0
def test_dict():
    value_dict = dataframe_to_dict(gdf, attr_str)
    cluster_object = AZPReactiveTabu(max_iterations=max_it, k1=k1, k2=k2,
                                     random_state=0)
    cluster_object.fit_from_dict(neighbors_dict, value_dict, n_regions=n_reg)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
示例#2
0
def test_dict(method):
    value_dict = dataframe_to_dict(gdf, attr_str)
    cluster_object = PRegionsExact()
    cluster_object.fit_from_dict(neighbors_dict, value_dict, n_regions=2,
                                 method=method)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
示例#3
0
def test_dict():
    value_dict = dataframe_to_dict(gdf, attr_str)
    cluster_object = AZPSimulatedAnnealing(init_temperature=1,
                                           max_iterations=2,
                                           random_state=0)
    cluster_object.fit_from_dict(neighbors_dict, value_dict, n_regions=2)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
def test_dict():
    value_dict = dataframe_to_dict(gdf, attr_str)
    cluster_object = AZPSimulatedAnnealing(init_temperature=1,
                                           max_iterations=2,
                                           random_state=0)
    cluster_object.fit_from_dict(neighbors_dict, value_dict, n_regions=2)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
示例#5
0
def test_dict(method):
    value_dict = dataframe_to_dict(gdf, attr_str)
    cluster_object = PRegionsExact()
    cluster_object.fit_from_dict(neighbors_dict,
                                 value_dict,
                                 n_regions=2,
                                 method=method)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
示例#6
0
def test_dict():
    value_dict = dataframe_to_dict(gdf, attr_str)
    cluster_object = AZP(random_state=0)
    cluster_object.fit_from_dict(neighbors_dict, value_dict, n_regions=2)
    result = region_list_from_array(cluster_object.labels_)
    compare_region_lists(result, optimal_clustering)
示例#7
0
    np.array([0, 0, 0, 1, 0, 0, 1, 1, 1]))

attr_str = "attr"
spatially_extensive_attr_str = "spatially_extensive_attr"
gdf = GeoDataFrame(
    {
        attr_str: attr,
        spatially_extensive_attr_str: spatially_extensive_attr
    },
    geometry=[
        Polygon([(x, y), (x, y + 1), (x + 1, y + 1), (x + 1, y)])
        for y in range(3) for x in range(3)
    ])

# for tests with scalar attr & spatially_extensive_attr per area
attr = attr.reshape(-1, 1)
spatially_extensive_attr = spatially_extensive_attr.reshape(-1, 1)

adj, graph, neighbors_dict, w = convert_from_geodataframe(gdf)
attr_dict = dataframe_to_dict(gdf, attr_str)
spatially_extensive_attr_dict = dataframe_to_dict(
    gdf, spatially_extensive_attr_str)
# for tests where attr & spatially_extensive_attr are vectors in each area
double_attr = np.column_stack((attr, attr))
double_spatially_extensive_attr = np.column_stack(
    (spatially_extensive_attr, spatially_extensive_attr))
double_threshold = np.hstack((threshold, threshold))
double_attr_dict = dataframe_to_dict(gdf, [attr_str] * 2)
double_spatially_extensive_attr_dict = dataframe_to_dict(
    gdf, [spatially_extensive_attr_str] * 2)
示例#8
0
from region.tests.util import region_list_from_array, convert_from_geodataframe
from region.util import dataframe_to_dict


attr = np.array([726.7, 623.6, 487.3,
                 200.4, 245.0, 481.0,
                 170.9, 225.9, 226.9])
attr_str = "attr"

gdf = GeoDataFrame(
        {attr_str: attr},
        geometry=[Polygon([(x, y),  # 3x3-grid
                           (x, y+1),
                           (x+1, y+1),
                           (x+1, y)]) for y in range(3) for x in range(3)]
)

optimal_clustering = region_list_from_array(np.array([0, 0, 0,
                                                      1, 1, 0,
                                                      1, 1, 1]))

# for tests with scalar attr & spatially_extensive_attr per area
attr = attr.reshape(-1, 1)
adj, graph, neighbors_dict, w = convert_from_geodataframe(gdf)
attr_dict = dataframe_to_dict(gdf, attr_str)

# for tests where attr & spatially_extensive_attr are vectors in each area
double_attr = np.column_stack((attr, attr))
double_attr_dict = dataframe_to_dict(gdf, [attr_str] * 2)
double_attr_str = [attr_str] * 2
示例#9
0
文件: data.py 项目: knaaptime/region
threshold = 2
optimal_clustering = region_list_from_array(np.array([0, 0,
                                                      1, 1]))
attr_str = "attr"
spatially_extensive_attr_str = "spatially_extensive_attr"
gdf = GeoDataFrame(
        {attr_str: attr,
         spatially_extensive_attr_str: spatially_extensive_attr},
         geometry=[Polygon([(x, y),
                            (x, y+1),
                            (x+1, y+1),
                            (x+1, y)]) for y in range(2) for x in range(2)]
)

# for tests with scalar attr & spatially_extensive_attr per area
attr = attr.reshape(-1, 1)
spatially_extensive_attr = spatially_extensive_attr.reshape(-1, 1)

adj, graph, neighbors_dict, w = convert_from_geodataframe(gdf)
attr_dict = dataframe_to_dict(gdf, attr_str)
spatially_extensive_attr_dict = dataframe_to_dict(gdf,
                                                  spatially_extensive_attr_str)
# for tests where attr & spatially_extensive_attr are vectors in each area
double_attr = np.column_stack((attr, attr))
double_spatially_extensive_attr = np.column_stack((spatially_extensive_attr,
                                                   spatially_extensive_attr))
double_threshold = np.hstack((threshold, threshold))
double_attr_dict = dataframe_to_dict(gdf, [attr_str] * 2)
double_spatially_extensive_attr_dict = dataframe_to_dict(
        gdf, [spatially_extensive_attr_str] * 2)