def wbWorkflow(): # Nodes warp = applyTransformNode(name='warpBraintoFMRI', transform='nac2fmri') mask = maskNode(name='wholeBrainMask', fileName='wholeBrainMask.nii', low=0.5, high=1.0, flags=['largest']) avg = afninodes.maskavenode('AFNI_1D', name='afni3DmaskAve_whole') # Pipeline wb = pipe.Workflow(name='wb') wb.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wb
def gmWorkflow(): # Nodes warp = applyTransformNode(name='warpGMtoFMRI', transform='t12fmri') mask = maskNode(name='grmMask', fileName='grmMask.nii', low=0.99, high=1.0) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_grm') # Pipeline gm = pipe.Workflow(name='gm') gm.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return gm
def wmWorkflow(): # Nodes warp = applyTransformNode(name='warpWMtoFMRI', transform='t12fmri') mask = maskNode(name='wmMask', fileName='whiteMatterMask.nii', low=0.99, high=1.0, flags=['erode']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_wm') # Pipeline wm = pipe.Workflow(name='wm') wm.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wm
def csfWorkflow(): # Nodes warp = applyTransformNode(name='warpCSFtoFMRI', transform='nac2fmri') mask = maskNode(name='csfMask', fileName='csfMask.nii', low=3, high=42, flags=['binary']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_csf') # Pipeline csf = pipe.Workflow(name='csf') csf.connect([(warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return csf
def gmWorkflow(): # Nodes warp = applyTransformNode(name='warpGMtoFMRI', transform='t12fmri') mask = maskNode(name='grmMask', fileName='grmMask.nii', low=0.99, high=1.0) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_grm') # Pipeline gm = pipe.Workflow(name='gm') gm.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return gm
def wbWorkflow(): # Nodes warp = applyTransformNode(name='warpBraintoFMRI', transform='nac2fmri') mask = maskNode(name='wholeBrainMask', fileName='wholeBrainMask.nii', low=0.5, high=1.0, flags=['largest']) avg = afninodes.maskavenode('AFNI_1D', name='afni3DmaskAve_whole') # Pipeline wb = pipe.Workflow(name='wb') wb.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wb
def wmWorkflow(): # Nodes warp = applyTransformNode(name='warpWMtoFMRI', transform='t12fmri') mask = maskNode(name='wmMask', fileName='whiteMatterMask.nii', low=0.99, high=1.0, flags=['erode']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_wm') # Pipeline wm = pipe.Workflow(name='wm') wm.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return wm
def csfWorkflow(): # Nodes warp = applyTransformNode(name='warpCSFtoFMRI', transform='nac2fmri') mask = maskNode(name='csfMask', fileName='csfMask.nii', low=3, high=42, flags=['binary']) avg = afninodes.maskavenode('AFNI_1D', 'afni3DmaskAve_csf') # Pipeline csf = pipe.Workflow(name='csf') csf.connect([ (warp, mask, [('output_image', 'input_file')]), (mask, avg, [('output_file', 'mask')]), ]) return csf