示例#1
0
def pbr(I_path, Im_path):
    I = plt.imread(I_path)
    Im = plt.imread(Im_path)
    X, Xm = util.my_cpselect(I_path, Im_path)
    if len(X[1]) == 1:
        print('x must be larger than 1')
        return
    X = util.c2h(X)
    Xm = util.c2h(Xm)
    T = reg.ls_affine(X, Xm)
    It, Xt = reg.image_transform(Im, T)

    fig = plt.figure(figsize=(30, 30))

    ax1 = fig.add_subplot(121)
    ax1.set_title('Overlay of original images', fontsize=35)
    ax1.axis('off')
    im11 = ax1.imshow(I)
    im12 = ax1.imshow(Im, alpha=0.7)

    ax2 = fig.add_subplot(122)
    ax2.set_title('Overlay transformed image over the fixed image',
                  fontsize=35)
    ax2.axis('off')
    im21 = ax2.imshow(I)
    im22 = ax2.imshow(It, alpha=0.7)
    return I, Im, It
示例#2
0
def pbr(I_path, Im_path):
    # Load in images
    I = plt.imread(I_path)
    Im = plt.imread(Im_path)

    # Set control points
    X, Xm = util.my_cpselect(I_path, Im_path)

    Xh = util.c2h(X)
    Xmh = util.c2h(Xm)

    # Find optimal affine transformation
    T = ls_affine(Xh, Xmh)

    # Transform Im
    Im_t, X_t = image_transform(Im, T)

    # Display images
    fig = plt.figure(figsize=(12, 5))

    ax1 = fig.add_subplot(131)
    im11 = ax1.imshow(I)

    ax2 = fig.add_subplot(132)
    im21 = ax2.imshow(Im)

    ax3 = fig.add_subplot(133)
    im31 = ax3.imshow(I)
    im32 = ax3.imshow(Im_t, alpha=0.7)

    ax1.set_title('Original image (I)')
    ax2.set_title('Warped image (Im)')
    ax3.set_title('Overlay with I and transformed Im')
def point_based_affine_registration(I, Im):
    # let the user selecte points
    X, Xm = util.my_cpselect(I, Im)

    # find affine transformation matrix
    T, reg_error = reg.ls_affine(util.c2h(X), util.c2h(Xm))

    # transform the moving image according to T
    Im = plt.imread(Im)
    It, _ = reg.image_transform(Im, T)

    return It, reg_error
def point_based_registration_demo():
    # ---------------------------------
    # Append the following code in jupiter to run:
    #   %matplotlib inline
    #   import sys
    #   sys.path.append("C:/Users/s163666/Documents/2019-2020/Medical Image Analysis/Mini_project_mia")
    #   from project_fout import point_based_registration_demo
    # point_based_registration_demo()
    # ---------------------------------

    # read the fixed and moving images, 2x T1 or T1&T2
    # change these in order to read different images
    I_path = './data/image_data/3_1_t1.tif'
    Im_path = './data/image_data/3_1_t2.tif'

    #Select set of corresponding points using my_cpselect
    X0, Xm0 = util.my_cpselect(I_path, Im_path)

    #Compute the affine transformation between the pair of images
    Xm = np.ones((3, Xm0.shape[1]))
    Xm[0, :] = Xm0[0, :]
    Xm[1, :] = Xm0[1, :]
    X = np.ones((3, X0.shape[1]))
    X[0, :] = X0[0, :]
    X[1, :] = X0[1, :]
    T, Etrain = reg.ls_affine(X, Xm)

    Etest = reg.point_based_error(I_path, Im_path, T)

    #read image
    Im = plt.imread(Im_path)

    #Apply the affine transformation to the moving image
    It, Xt = reg.image_transform(Im, T)

    #plot figure
    fig = plt.figure(figsize=(12, 5))
    #fig, ax = plt.subplots()

    ax = fig.add_subplot(121)
    im = ax.imshow(It)

    ax.set_title("Transformed image")
    ax.set_xlabel('x')
    ax.set_ylabel('y')

    print(Etrain)
    print(Etest)

    display(fig)
    fig.savefig('./data/image_results/3_1_t1 + 3_1_t2.png')
def my_point_based_registration():
    I = '../data/image_data/3_2_t1.tif'
    I_d = '../data/image_data/3_2_t1_d.tif'
    I_plt = plt.imread('../data/image_data/3_2_t1.tif')
    I_d_plt = plt.imread('../data/image_data/3_2_t1_d.tif')

    X, Xm = util.my_cpselect(I, I_d)
    affine_transformation = reg.ls_affine(X, Xm)
    transformed_moving_image, transformed_vector = reg.image_transform(
        I_d_plt, affine_transformation)

    fig = plt.figure(figsize=(12, 5))
    ax1 = fig.add_subplot(131)
    Im1 = ax1.imshow(I_plt)  # Fixed image or Transformed image
    Im2 = ax1.imshow(transformed_moving_image,
                     alpha=0.7)  # Transformed image or Fixed image
def pbr(I_path, Im_path):
    # Load in images
    I = plt.imread(I_path)
    Im = plt.imread(Im_path)

    # Set control points
    X, Xm = util.my_cpselect(I_path, Im_path)

    Xh = util.c2h(X)
    Xmh = util.c2h(Xm)

    # Find optimal affine transformation
    T = ls_affine(Xh, Xmh)

    # Transform Im
    Im_t, X_t = image_transform(Im, T)

    return Im_t, X_t, X, Xm, T
示例#7
0
def point_based_error(I_path,Im_path,T):
    
    #Select set of corresponding points using my_cpselect
    X0, Xm0 = util.my_cpselect(I_path, Im_path)
    
    Xm = np.ones((3, Xm0.shape[1])) 
    Xm[0,:] = Xm0[0,:]
    Xm[1,:]= Xm0[1,:]
    X = np.ones((3, X0.shape[1])) 
    X[0,:] = X0[0,:]
    X[1,:]= X0[1,:]
    b1 = np.transpose(X[0,:])
    b2 = np.transpose(X[1,:])
    #Compute the affine transformation between the pair of images
    _, Etestx = reg.ls_solve(T,b1)
    _, Etesty = reg.ls_solve(T,b2)
    Etest = np.array([[Etestx],[Etesty]])
    
    return Etest
def my_point_based_registration_2():

    I2 = '../data/image_data/3_2_t1.tif'  # Tweede opdracht T1 slide
    I_d_2 = '../data/image_data/3_2_t2.tif'  # T2 slice
    I_plt_2 = plt.imread('../data/image_data/3_2_t1.tif')
    I_d_plt_2 = plt.imread('../data/image_data/3_2_t1_d.tif')

    X2, Xm2 = util.my_cpselect(I2, I_d_2)
    affine_transformation_2 = reg.ls_affine(X2, Xm2)
    transformed_moving_image_2, transformed_vector_2 = reg.image_transform(
        I_d_plt_2, affine_transformation_2)

    fig = plt.figure(figsize=(12, 5))
    ax1 = fig.add_subplot(131)
    Im1 = ax1.imshow(
        I_plt_2)  # Fixed image or Transformed image, Je mag wisselen
    Im2 = ax1.imshow(
        transformed_moving_image_2,
        alpha=0.7)  # Transformed image or Fixed image  Mag wisselen
#
#
##calculate correlation
#display("Calculate correlation")
#corr_I1 = reg.correlation(I1, It1)
#
##calculate mutual information
#display("Calculate mutual information")
#p1 = reg.joint_histogram(I1, It1)
#mi_I1 = reg.mutual_information(p1)
"""
Part 2: T1 and T2
"""

##choose fiducial points and save them for T1 and T1 moving
X1, X2 = util.my_cpselect(I1_path, I2_path)

Th2, fig2, It2 = proj.point_based_registration(I1_path, I2_path, X1, X2)
np.save(
    path + "/transformation_matrix_T1_and_T2_moving_" + str(numberofpoints),
    Th2)
plt.savefig(path + "/transformed_T2_image_" + str(numberofpoints) + ".png")

#calculate correlation
display("Calculate correlation")
corr_I2 = reg.correlation(I1, It2)
#calculate mutual information
display("Calculate mutual information")
p2 = reg.joint_histogram(I1, It2)
mi_I2 = reg.mutual_information(p2)
"""
示例#10
0
#DO NOT CHANGE FOLLOWING LINES
#Select images: T1 and T1 moving and T2 slice
#paths of the images
I1_path = '../data/image_data/1_1_t1.tif'
Im1_path = '../data/image_data/1_1_t1_d.tif'
I2_path = '../data/image_data/1_1_t2.tif'

#read the images
I1 = plt.imread(I1_path)
Im1 = plt.imread(Im1_path)
Im2 = plt.imread(I2_path)

if set_of_images == 1:
    full_path = path + "/transformation_matrix_T1_and_T1_moving_" + str(
        numberofpoints) + ".npy"
    X1_target, Xm1_target = util.my_cpselect(I1_path, Im1_path)

else:
    full_path = path + "/transformation_matrix_T1_and_T2_" + str(
        numberofpoints) + ".npy"
    X1_target, Xm1_target = util.my_cpselect(I1_path, I2_path)

transformation_matrix = np.load(full_path)
"""
Evaluation of point-based affine image registration
"""

Reg_error1 = proj.Evaluate_point_based_registration(transformation_matrix,
                                                    X1_target, Xm1_target)
if set_of_images == 1:
    print('Registration error for pair of T1 and T1 moving: {:.2f}'.format(