示例#1
0
    def inject_remove_node(self, lhs_node_id):
        """Inject a new node removal to the rule.

        This method removes from `p` all the nodes that map
        to the node with the id `lhs_node_id`. In addition,
        all the nodes from `rhs` that are mapped by the nodes
        removed in `p` are also removed.

        Parameters
        ----------
        lhs_node_id
            Id of the node in `lhs` that should be removed
            by the rule.
        """
        # remove corresponding nodes from p and rhs
        p_keys = keys_by_value(self.p_lhs, lhs_node_id)
        for k in p_keys:
            if k in self.p.nodes():
                primitives.remove_node(self.p, k)
            if self.p_rhs[k] in self.rhs.nodes():
                primitives.remove_node(self.rhs, self.p_rhs[k])
                affected_nodes = keys_by_value(self.p_rhs, self.p_rhs[k])
                for node in affected_nodes:
                    del self.p_rhs[node]
            del self.p_lhs[k]
        return
示例#2
0
文件: rules.py 项目: y1ngyang/ReGraph
 def remove_node_rhs(self, n):
     """Remove a node from a rhs."""
     p_keys = keys_by_value(self.p_rhs, n)
     for p_node in p_keys:
         primitives.remove_node(self.p, p_node)
         del self.p_rhs[p_node]
         del self.p_lhs[p_node]
     primitives.remove_node(self.rhs, n)
示例#3
0
def subgraph(graph, nodes):
    """Get a subgraph induced by a set nodes.

    :param graph:
    :param nodes:

    :return:
    """
    subgraph = copy.deepcopy(graph)
    for node in graph.nodes():
        if node not in nodes:
            remove_node(subgraph, node)
    return subgraph
示例#4
0
    def _remove_node_rhs(self, node_id):
        """Remove a node from the `rhs`.

        This method removes a given node from the `rhs`,
        if there exist nodes from `p` that map to this node
        they are removed as well.
        """
        p_keys = keys_by_value(self.p_rhs, node_id)
        for p_node in p_keys:
            primitives.remove_node(self.p, p_node)
            del self.p_rhs[p_node]
            del self.p_lhs[p_node]
        primitives.remove_node(self.rhs, node_id)
示例#5
0
def subgraph(graph, nodes):
    """Get a subgraph induced by a set nodes.

    :param graph:
    :param nodes:

    :return:
    """
    subgraph = copy.deepcopy(graph)
    for node in graph.nodes():
        if node not in nodes:
            remove_node(subgraph, node)
    return subgraph
示例#6
0
文件: rules.py 项目: y1ngyang/ReGraph
 def remove_node(self, n):
     """Remove a node in the graph."""
     # remove corresponding nodes from p and rhs
     p_keys = keys_by_value(self.p_lhs, n)
     for k in p_keys:
         if k in self.p.nodes():
             primitives.remove_node(self.p, k)
         if self.p_rhs[k] in self.rhs.nodes():
             primitives.remove_node(self.rhs, self.p_rhs[k])
             affected_nodes = keys_by_value(self.p_rhs, self.p_rhs[k])
             for node in affected_nodes:
                 del self.p_rhs[node]
         del self.p_lhs[k]
     return
示例#7
0
def _get_rule_liftings(hierarchy,
                       origin_id,
                       rule,
                       instance,
                       p_typing=None,
                       ignore=None):
    if ignore is None:
        ignore = []
    if p_typing is None:
        p_typing = {}
    liftings = {}
    if rule.is_restrictive():
        for graph in hierarchy.bfs_tree(origin_id, reverse=True):
            if graph not in ignore:
                if graph != origin_id:
                    # find the lifting to a graph
                    if hierarchy.is_graph(graph):
                        origin_typing = hierarchy.get_typing(graph, origin_id)

                        # Compute L_G
                        l_g, l_g_g, l_g_l = pullback(
                            hierarchy.get_graph(graph), rule.lhs,
                            hierarchy.get_graph(origin_id), origin_typing,
                            instance)

                        # Compute canonical P_G
                        canonical_p_g, p_g_l_g, p_g_p = pullback(
                            l_g, rule.p, rule.lhs, l_g_l, rule.p_lhs)

                        # Remove controlled things from P_G
                        if graph in p_typing.keys():
                            l_g_factorization = {
                                keys_by_value(l_g_g, k)[0]: v
                                for k, v in p_typing[graph].items()
                            }
                            p_g_nodes_to_remove = set()
                            for n in canonical_p_g.nodes():
                                l_g_node = p_g_l_g[n]
                                # If corresponding L_G node is specified in
                                # the controlling relation, remove all
                                # the instances of P nodes not mentioned
                                # in this relations
                                if l_g_node in l_g_factorization.keys():
                                    p_nodes = l_g_factorization[l_g_node]
                                    if p_g_p[n] not in p_nodes:
                                        del p_g_p[n]
                                        del p_g_l_g[n]
                                        p_g_nodes_to_remove.add(n)

                            for n in p_g_nodes_to_remove:
                                primitives.remove_node(canonical_p_g, n)
                        liftings[graph] = {
                            "rule": Rule(p=canonical_p_g,
                                         lhs=l_g,
                                         p_lhs=p_g_l_g),
                            "instance": l_g_g,
                            "l_g_l": l_g_l,
                            "p_g_p": p_g_p
                        }

    return liftings
示例#8
0
def _propagate_rule_up(graph,
                       origin_typing,
                       rule,
                       instance,
                       p_origin,
                       p_typing,
                       inplace=False):

    if inplace is True:
        graph_prime = graph
    else:
        graph_prime = copy.deepcopy(graph)

    if p_typing is None:
        p_typing = {}

    lhs_removed_nodes = rule.removed_nodes()
    lhs_removed_node_attrs = rule.removed_node_attrs()
    p_removed_edges = rule.removed_edges()
    p_removed_edge_attrs = rule.removed_edge_attrs()
    lhs_cloned_nodes = rule.cloned_nodes()

    graph_prime_graph = id_of(graph.nodes())
    graph_prime_origin = copy.deepcopy(origin_typing)

    for lhs_node in rule.lhs.nodes():
        origin_node = instance[lhs_node]
        g_nodes = keys_by_value(origin_typing, origin_node)
        for node in g_nodes:
            if lhs_node in lhs_removed_nodes:
                primitives.remove_node(graph_prime, node)
                del graph_prime_graph[node]
                del graph_prime_origin[node]
            else:
                graph_prime_origin[node] = origin_node

    for lhs_node, p_nodes in lhs_cloned_nodes.items():
        nodes_to_clone = keys_by_value(origin_typing, instance[lhs_node])
        for node in nodes_to_clone:
            if node in p_typing.keys():
                p_nodes = p_typing[node]
            for i, p_node in enumerate(p_nodes):
                if i == 0:
                    graph_prime_origin[node] = p_origin[p_node]
                    graph_prime_graph[node] = node
                else:
                    new_name = primitives.clone_node(graph_prime, node)
                    graph_prime_origin[new_name] = p_origin[p_node]
                    graph_prime_graph[new_name] = node
            if len(p_nodes) == 0:
                primitives.remove_node(graph_prime, node)

    for lhs_node, attrs in lhs_removed_node_attrs.items():
        nodes_to_remove_attrs = keys_by_value(origin_typing,
                                              instance[lhs_node])
        for node in nodes_to_remove_attrs:
            primitives.remove_node_attrs(graph_prime, node, attrs)

    for p_u, p_v in p_removed_edges:
        us = keys_by_value(graph_prime_origin, p_origin[p_u])
        vs = keys_by_value(graph_prime_origin, p_origin[p_v])
        for u in us:
            for v in vs:
                if (u, v) in graph_prime.edges():
                    primitives.remove_edge(graph_prime, u, v)

    for (p_u, p_v), attrs in p_removed_edge_attrs.items():
        us = keys_by_value(origin_typing, p_origin[p_u])
        vs = keys_by_value(origin_typing, p_origin[p_v])
        for u in us:
            for v in vs:
                primitives.removed_edge_attrs(graph_prime, u, v, attrs)

    return (graph_prime, graph_prime_graph, graph_prime_origin)
示例#9
0
def _propagate_rule_to(graph, origin_typing, rule, instance, p_origin,
                       inplace=False):

    if inplace is True:
        graph_prime = graph
    else:
        graph_prime = copy.deepcopy(graph)

    lhs_removed_nodes = rule.removed_nodes()
    lhs_removed_node_attrs = rule.removed_node_attrs()
    p_removed_edges = rule.removed_edges()
    p_removed_edge_attrs = rule.removed_edge_attrs()
    lhs_cloned_nodes = rule.cloned_nodes()

    graph_prime_graph = id_of(graph.nodes())
    graph_prime_origin = dict()

    for lhs_node in rule.lhs.nodes():
        origin_node = instance[lhs_node]
        g_nodes = keys_by_value(
            origin_typing, origin_node)
        for node in g_nodes:
            if lhs_node in lhs_removed_nodes:
                primitives.remove_node(
                    graph_prime, node)
                del graph_prime_graph[node]
            else:
                graph_prime_origin[node] = origin_node

    for lhs_node, p_nodes in lhs_cloned_nodes.items():
        nodes_to_clone = keys_by_value(origin_typing, instance[lhs_node])
        for node in nodes_to_clone:
            for i, p_node in enumerate(p_nodes):
                if i == 0:
                    graph_prime_origin[node] = p_origin[p_node]
                    graph_prime_graph[node] = node
                else:
                    new_name = primitives.clone_node(
                        graph_prime,
                        node)
                    graph_prime_origin[new_name] = p_origin[p_node]
                    graph_prime_graph[new_name] = node

    for lhs_node, attrs in lhs_removed_node_attrs.items():
        nodes_to_remove_attrs = keys_by_value(
            origin_typing, instance[lhs_node])
        for node in nodes_to_remove_attrs:
            primitives.remove_node_attrs(
                graph_prime,
                node, attrs)

    for p_u, p_v in p_removed_edges:
        us = keys_by_value(graph_prime_origin, p_origin[p_u])
        vs = keys_by_value(graph_prime_origin, p_origin[p_v])
        for u in us:
            for v in vs:
                if (u, v) in graph_prime.edges():
                    primitives.remove_edge(
                        graph_prime, u, v)

    for (p_u, p_v), attrs in p_removed_edge_attrs.items():
        us = keys_by_value(origin_typing, p_origin[p_u])
        vs = keys_by_value(origin_typing, p_origin[p_v])
        for u in us:
            for v in vs:
                primitives.removed_edge_attrs(
                    graph_prime, u, v, attrs)

    return (graph_prime, graph_prime_graph, graph_prime_origin)
示例#10
0
def pullback_complement(a, b, d, a_b, b_d, inplace=False):
    """Find the final pullback complement from a->b->d.

    Makes changes to d inplace.
    """

    check_homomorphism(a, b, a_b, total=True)
    check_homomorphism(b, d, b_d, total=True)

    if not is_monic(b_d):
        raise InvalidHomomorphism(
            "Second homomorphism is not monic, "
            "cannot find final pullback complement!"
        )

    if inplace is True:
        c = d
    else:
        c = copy.deepcopy(d)

    a_c = dict()
    c_d = id_of(c.nodes())

    # Remove/clone nodes
    for b_node in b.nodes():
        a_keys = keys_by_value(a_b, b_node)
        # Remove nodes
        if len(a_keys) == 0:
            remove_node(c, b_d[b_node])
            del c_d[b_d[b_node]]
        # Keep nodes
        elif len(a_keys) == 1:
            a_c[a_keys[0]] = b_d[b_node]
        # Clone nodes
        else:
            i = 1
            for k in a_keys:
                if i == 1:
                    a_c[k] = b_d[b_node]
                    c_d[b_d[b_node]] = b_d[b_node]
                else:
                    new_name = clone_node(c, b_d[b_node])
                    a_c[k] = new_name
                    c_d[new_name] = b_d[b_node]
                i += 1

    # Remove edges
    for (b_n1, b_n2) in b.edges():
        a_keys_1 = keys_by_value(a_b, b_n1)
        a_keys_2 = keys_by_value(a_b, b_n2)
        if len(a_keys_1) > 0 and len(a_keys_2) > 0:
            for k1 in a_keys_1:
                for k2 in a_keys_2:
                    if d.is_directed():
                        if (k1, k2) not in a.edges() and\
                           (a_c[k1], a_c[k2]) in c.edges():
                            remove_edge(c, a_c[k1], a_c[k2])
                    else:
                        if (k1, k2) not in a.edges() and\
                           (k2, k1) not in a.edges():
                            if (a_c[k1], a_c[k2]) in d.edges() or\
                               (a_c[k2], a_c[k1]) in d.edges():
                                remove_edge(c, a_c[k1], a_c[k2])
    # Remove node attrs
    for a_node in a.nodes():
        attrs_to_remove = dict_sub(
            b.node[a_b[a_node]],
            a.node[a_node]
        )
        remove_node_attrs(c, a_c[a_node], attrs_to_remove)
        # removed_node_attrs[a_c[a_node]] = attrs_to_remove

    # Remove edge attrs
    for (n1, n2) in a.edges():
        attrs_to_remove = dict_sub(
            get_edge(b, a_b[n1], a_b[n2]),
            get_edge(a, n1, n2)
        )
        remove_edge_attrs(c, a_c[n1], a_c[n2], attrs_to_remove)
        # removed_edge_attrs[(a_c[n1], a_c[n2])] = attrs_to_remove

    return (c, a_c, c_d)
示例#11
0
def unfold_nugget(hie, nug_id, ag_id, mm_id, test=False):
    """unfold a nugget with conflicts to create multiple nuggets"""
    nug_gr = copy.deepcopy(hie.node[nug_id].graph)
    mm_typing = copy.deepcopy(hie.get_typing(nug_id, mm_id))
    ag_typing = copy.deepcopy(hie.get_typing(nug_id, ag_id))

    # create one new locus for each linked agent, region or residue linked to
    #  a locus
    new_ports = {}  # new_port remember the loci/state it is created from
    old_ports = []
    non_comp_neighbors = {}
    for node in nug_gr.nodes():

        # move the state test to explicit "is_equal" nodes
        if mm_typing[node] == "state" and "val" in nug_gr.node[node]:
            for val in nug_gr.node[node]["val"]:
                id_prefix = "{}_{}".format(val, node)
                test_id = unique_node_id(nug_gr, id_prefix)
                add_node(nug_gr, test_id, {"val": val})
                mm_typing[test_id] = "is_equal"
                add_edge(nug_gr, test_id, node)

                # for testing
                if test:
                    ag = hie.node[ag_id].graph
                    ag_test_id = unique_node_id(ag, id_prefix)
                    add_node(ag, ag_test_id, {"val": val})
                    add_edge(ag, ag_test_id, ag_typing[node])
                    hie.edge[ag_id][mm_id].mapping[ag_test_id] = "is_equal"

                    real_nugget = hie.node[nug_id].graph
                    old_test_id = unique_node_id(real_nugget, id_prefix)
                    add_node(real_nugget, old_test_id, {"val": val})
                    add_edge(real_nugget, old_test_id, node)
                    hie.edge[nug_id][ag_id].mapping[old_test_id] = ag_test_id

        if mm_typing[node] in ["locus", "state"]:
            comp_neighbors = [
                comp for comp in nug_gr.successors(node)
                if mm_typing[comp] in ["agent", "region", "residue"]
            ]
            other_neighbors = [
                other for other in (nug_gr.successors(node) +
                                    nug_gr.predecessors(node))
                if other not in comp_neighbors
            ]
            old_ports.append(node)
            for comp in comp_neighbors:
                id_prefix = "{}_{}".format(node, comp)
                port_id = unique_node_id(nug_gr, id_prefix)
                add_node(nug_gr, port_id)
                mm_typing[port_id] = mm_typing[node]
                ag_typing[port_id] = ag_typing[node]
                new_ports[port_id] = node
                add_edge(nug_gr, port_id, comp)
                for other in other_neighbors:
                    if mm_typing[other] in ["mod", "is_equal"]:
                        add_edge(nug_gr, other, port_id)
                    else:
                        add_edge(nug_gr, port_id, other)
                non_comp_neighbors[port_id] = set(other_neighbors)

    # remove the old potentially shared between agents/region/residues loci
    for port in old_ports:
        remove_node(nug_gr, port)
        del mm_typing[port]
        del ag_typing[port]

    # associate the components nodes (agent,region, residue) to the ports
    components = {}
    for port in new_ports:
        components[port] = _agents_of_components(nug_gr, mm_typing, port)

    def _nonconflicting(port1, action_node1, port2, action_node2):
        typ1 = mm_typing[action_node1]
        typ2 = mm_typing[action_node2]
        if port1 == port2:
            if typ1 == typ2:
                return False
            if mm_typing[port1] == "state":
                return True
            if {typ1, typ2} & {"is_free", "is_bnd"}:
                return False
            different_loci = set(nug_gr.predecessors(action_node1)) !=\
                set(nug_gr.predecessors(action_node2))
            return different_loci

        elif action_node1 != action_node2:
            return True
        elif typ1 in ["mod", "is_equal", "is_free"]:
            return False
        else:
            return new_ports[port1] != new_ports[port2]

    def replace(node):
        """identify is_equal and mod nodes with same values"""
        if mm_typing[node] == "is_equal":
            return ("is_equal", str(nug_gr.node[node]["val"]))
        if mm_typing[node] == "mod":
            return ("mod", str(nug_gr.node[node]["val"]))
        return node

    def reduce_subsets(set_list):
        return set_list

    def subset_up_to_equivalence(set1, set2):
        set1 = {frozenset(map(replace, s)) for s in set1}
        set2 = {frozenset(map(replace, s)) for s in set2}
        return set1.issubset(set2)

    def replace2(node):
        """identify is_equal and mod nodes with same values"""
        if mm_typing[node] == "is_equal":
            return ("is_equal", str(nug_gr.node[node]["val"]),
                    frozenset(nug_gr.successors(node)))
        if mm_typing[node] == "mod":
            return ("mod", str(nug_gr.node[node]["val"]),
                    frozenset(nug_gr.successors(node)))
        return node

    def _equivalent_actions(act1, act2, edge_list):
        l1 = [(port, replace(node)) for (port, node) in edge_list
              if node == act1]
        l2 = [(port, replace(node)) for (port, node) in edge_list
              if node == act2]
        return l1 == l2

    def _equivalent_edge(p1, a1, p2, a2):
        return p1 == p2 and replace2(a1) == replace2(a2)

    def _valid_subsets(memo_dict, set_list):
        """build non conflicting sets of sets of nodes"""
        if set_list == []:
            return [[]]
        memo_key = frozenset(set_list)
        if memo_key in memo_dict:
            return memo_dict[memo_key]
        (port, a_node) = set_list[0]
        conflicting_edges = [
            (port2, a_node2) for (port2, a_node2) in set_list[1:]
            if not _nonconflicting(port, a_node, port2, a_node2)
        ]

        nonconflicting_sets =\
            [(port2, a_node2) for (port2, a_node2) in set_list[1:]
             if _nonconflicting(port, a_node, port2, a_node2)]
        equivalent_edges = [
            (p2, n2) for (p2, n2) in set_list
            if p2 == port and _equivalent_actions(a_node, n2, set_list)
        ]

        new_set_list = [
            (p2, n2) for (p2, n2) in set_list[1:]
            if p2 != port or not _equivalent_actions(a_node, n2, set_list)
        ]

        cond1 = (len([node
                      for (_, node) in set_list[1:] if node == a_node]) == 0
                 and all(
                     replace(n2) == replace(a_node)
                     for (p2, n2) in set_list[1:] if p2 == port))

        if nonconflicting_sets == new_set_list or cond1:
            memo_dict[memo_key] =\
                [sub + [(port, a_node)]
                 for sub in _valid_subsets(memo_dict, nonconflicting_sets)]
            return memo_dict[memo_key]
        else:
            without_current_edge = _valid_subsets(memo_dict, new_set_list)

            def conflict_with_removed_edges(edge_list):
                return all(
                    any(not _nonconflicting(p1, a_node1, p2, a_node2)
                        for (p2, a_node2) in edge_list)
                    for (p1, a_node1) in equivalent_edges)

            # with_conflict = list(filter(conflict_with_current_edge, without_current_edge))
            with_conflict = list(
                filter(conflict_with_removed_edges, without_current_edge))
            memo_dict[memo_key] =\
                with_conflict +\
                [sub + [(port, a_node)]
                 for sub in _valid_subsets(memo_dict, nonconflicting_sets)]
            return memo_dict[memo_key]

    def _complete_subsets(set_list):
        print(set_list)
        return [components[port] | {a_node} for (port, a_node) in set_list]

    def _remove_uncomplete_actions(set_list):
        """remove actions and test which are not connected to enough
         components"""
        labels = {node: 0 for node in nug_gr.nodes()}
        for nodes in set_list:
            for node in nodes:
                labels[node] += 1

        to_remove = set()
        for node in nug_gr.nodes():
            if (mm_typing[node] in ["bnd", "brk", "is_bnd"]
                    and labels[node] < 2):
                to_remove.add(node)
            if (mm_typing[node] in ["is_free", "mod", "is_equal"]
                    and labels[node] < 1):
                to_remove.add(node)

        return [nodes for nodes in set_list if not nodes & to_remove]

    port_action_list = [(port, a_node)
                        for (port, a_nodes) in non_comp_neighbors.items()
                        for a_node in a_nodes]

    # build globally non conflicting subsets and remove the uncomplete actions
    memo_dict = {}
    valid_ncss = {
        frozenset(
            map(frozenset,
                _remove_uncomplete_actions(_complete_subsets(set_list))))
        for set_list in _valid_subsets(memo_dict, port_action_list)
    }
    maximal_valid_ncss = valid_ncss

    # add the nodes that where not considered at all
    # because they are not connected to a locus or state
    nodes_with_ports = set.union(
        set.union(*(list(non_comp_neighbors.values()) + [set()])),
        set.union(*(list(components.values()) + [set()])))

    nodes_without_ports = set(nug_gr.nodes()) - nodes_with_ports

    # build the nuggets and add them to the hierarchy
    # as children of the old one for testing
    def _graph_of_ncs(ncs):
        sub_graphs = [(subgraph(nug_gr, nodes), {node: node
                                                 for node in nodes})
                      for nodes in ncs]
        sub_graphs.append((subgraph(nug_gr, nodes_without_ports),
                           {node: node
                            for node in nodes_without_ports}))
        return multi_pullback_pushout(nug_gr, sub_graphs)

    valid_graphs = map(_graph_of_ncs, maximal_valid_ncss)
    new_nuggets = []
    for (new_nugget, new_typing) in valid_graphs:
        if test:
            typing_by_old_nugget = {}
            for node in new_nugget.nodes():
                if new_typing[node] in hie.node[nug_id].graph.nodes():
                    typing_by_old_nugget[node] = new_typing[node]
                else:
                    typing_by_old_nugget[node] = new_ports[new_typing[node]]
            new_nuggets.append((new_nugget, typing_by_old_nugget))
        else:
            new_ag_typing = compose_homomorphisms(ag_typing, new_typing)
            new_mm_typing = compose_homomorphisms(mm_typing, new_typing)
            new_nuggets.append((new_nugget, new_ag_typing, new_mm_typing))
    return new_nuggets
示例#12
0
def compose_splices(hie, ag_id, mm_id, splices_list, new_rule_name):
    """build a rewritting rule of the action graph,
    from a list of chosen splice variants,
    each one represented as a subgraph of the action graph """

    known_agents = []
    lhs = nx.DiGraph()
    ppp = nx.DiGraph()
    p_lhs = {}
    lhs_ag = {}
    action_graph = hie.node[ag_id].graph
    for spl in splices_list:
        mm_typing = hie.get_typing(spl, mm_id)
        ag_typing = hie.get_typing(spl, ag_id)
        splg = hie.node[spl].graph
        agents = [
            ag_typing[node] for node in splg if mm_typing[node] == "agent"
        ]
        if len(agents) != 1:
            raise ValueError("there must be exactly one agent in a splice")

        components = _components_of_agent(action_graph,
                                          hie.edge[ag_id][mm_id].mapping,
                                          agents[0])
        new_agent = action_graph.subgraph(components)
        newagent_ag = {n: n for n in new_agent.nodes()}

        # If no locus at all is present, we add them all to the variant
        if all(mm_typing[node] != "locus" for node in splg):
            ag_mm = hie.edge[ag_id][mm_id].mapping
            new_splg = copy.deepcopy(new_agent)
            for node in new_agent:
                if (ag_mm[node] != "locus"
                        and node not in [ag_typing[n] for n in splg]):
                    remove_node(new_splg, node)
            splg = new_splg
            ag_typing = {node: node for node in new_splg}
            mm_typing = compose_homomorphisms(ag_mm, ag_typing)

        if agents[0] not in known_agents:
            known_agents.append(agents[0])
            (new_lhs, lhs_newlhs, newagent_newlhs, newlhs_ag) =\
                pullback_pushout(lhs, new_agent, action_graph, lhs_ag,
                                 newagent_ag)

            ppp_newlhs = compose_homomorphisms(lhs_newlhs, p_lhs)
        else:
            new_lhs = lhs
            newlhs_ag = lhs_ag
            ppp_newlhs = p_lhs

        splg_newlhs = {}
        for node in splg:
            imgs = keys_by_value(newlhs_ag, ag_typing[node])
            if len(imgs) != 1:
                raise ValueError("node {} should have exactly one"
                                 " image in new_agent ({})".format(node, imgs))
            splg_newlhs[node] = imgs[0]
        (tmp, tmp_ppp, tmp_splg) = pullback(ppp, splg, new_lhs, ppp_newlhs,
                                            splg_newlhs)
        loci_nodes = [
            node for node in tmp.nodes()
            if (compose_homomorphisms(mm_typing, tmp_splg)[node] == "locus")
        ]
        loci_graph = tmp.subgraph(loci_nodes)
        loci_graph_id = {node: node for node in loci_graph.nodes()}
        locigraph_splg = compose_homomorphisms(tmp_splg, loci_graph_id)
        locigraph_ppp = compose_homomorphisms(tmp_ppp, loci_graph_id)
        (new_ppp, ppp_newppp, splg_newppp) = pushout(loci_graph, ppp, splg,
                                                     locigraph_ppp,
                                                     locigraph_splg)
        newppp_newlhs = {}
        # maybe test but conflict should not happen
        for node in ppp.nodes():
            newppp_newlhs[ppp_newppp[node]] = ppp_newlhs[node]
        for node in splg.nodes():
            newppp_newlhs[splg_newppp[node]] = splg_newlhs[node]

        ppp = new_ppp
        lhs = new_lhs
        p_lhs = newppp_newlhs
        lhs_ag = newlhs_ag

    lhs_mm_typing = compose_homomorphisms(hie.edge[ag_id][mm_id].mapping,
                                          lhs_ag)
    (lhs_loci, lhsloci_lhs) = subgraph_by_types(lhs, ["locus"], lhs_mm_typing)
    (final_ppp, _, _, finalppp_lhs) = pullback_pushout(lhs_loci, ppp, lhs,
                                                       lhsloci_lhs, p_lhs)
    rule = Rule(final_ppp, lhs, final_ppp, finalppp_lhs)
    rule_id = hie.unique_graph_id(new_rule_name)
    rule_name = tree.get_valid_name(hie, ag_id, new_rule_name)
    hie.add_rule(rule_id, rule, {"name": rule_name})
    hie.add_rule_typing(rule_id, ag_id, lhs_ag,
                        compose_homomorphisms(lhs_ag, finalppp_lhs))
示例#13
0
def pullback_complement(a, b, d, a_b, b_d, inplace=False):
    """Find the final pullback complement from a->b->d.

    Makes changes to d inplace.
    """

    check_homomorphism(a, b, a_b, total=True)
    check_homomorphism(b, d, b_d, total=True)

    if not is_monic(b_d):
        raise InvalidHomomorphism("Second homomorphism is not monic, "
                                  "cannot find final pullback complement!")

    if inplace is True:
        c = d
    else:
        c = copy.deepcopy(d)

    a_c = dict()
    c_d = id_of(c.nodes())

    # Remove/clone nodes
    for b_node in b.nodes():
        a_keys = keys_by_value(a_b, b_node)
        # Remove nodes
        if len(a_keys) == 0:
            remove_node(c, b_d[b_node])
            del c_d[b_d[b_node]]
        # Keep nodes
        elif len(a_keys) == 1:
            a_c[a_keys[0]] = b_d[b_node]
        # Clone nodes
        else:
            i = 1
            for k in a_keys:
                if i == 1:
                    a_c[k] = b_d[b_node]
                    c_d[b_d[b_node]] = b_d[b_node]
                else:
                    new_name = clone_node(c, b_d[b_node])
                    a_c[k] = new_name
                    c_d[new_name] = b_d[b_node]
                i += 1

    # Remove edges
    for (b_n1, b_n2) in b.edges():
        a_keys_1 = keys_by_value(a_b, b_n1)
        a_keys_2 = keys_by_value(a_b, b_n2)
        if len(a_keys_1) > 0 and len(a_keys_2) > 0:
            for k1 in a_keys_1:
                for k2 in a_keys_2:
                    if d.is_directed():
                        if (k1, k2) not in a.edges() and\
                           (a_c[k1], a_c[k2]) in c.edges():
                            remove_edge(c, a_c[k1], a_c[k2])
                    else:
                        if (k1, k2) not in a.edges() and\
                           (k2, k1) not in a.edges():
                            if (a_c[k1], a_c[k2]) in d.edges() or\
                               (a_c[k2], a_c[k1]) in d.edges():
                                remove_edge(c, a_c[k1], a_c[k2])
    # Remove node attrs
    for a_node in a.nodes():
        attrs_to_remove = dict_sub(b.node[a_b[a_node]], a.node[a_node])
        remove_node_attrs(c, a_c[a_node], attrs_to_remove)
        # removed_node_attrs[a_c[a_node]] = attrs_to_remove

    # Remove edge attrs
    for (n1, n2) in a.edges():
        attrs_to_remove = dict_sub(get_edge(b, a_b[n1], a_b[n2]),
                                   get_edge(a, n1, n2))
        remove_edge_attrs(c, a_c[n1], a_c[n2], attrs_to_remove)
        # removed_edge_attrs[(a_c[n1], a_c[n2])] = attrs_to_remove

    return (c, a_c, c_d)