def added_edge_attrs(self): """Get edge attributes added by the rule. Returns ------- attrs : dict Dictionary where keys are edges from `rhs` and values are attribute dictionaries to add. """ attrs = dict() for s, t in self.rhs.edges(): s_p_nodes = keys_by_value(self.p_rhs, s) t_p_nodes = keys_by_value(self.p_rhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.rhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) return attrs
def removed_edge_attrs(self): """Get edge attributes removed by the rule. Returns ------- attrs : dict Dictionary where keys are edges from `lhs` and values are attribute dictionaries to remove. """ attrs = dict() for s, t in self.lhs.edges(): s_p_nodes = keys_by_value(self.p_lhs, s) t_p_nodes = keys_by_value(self.p_lhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.lhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) if len(new_attrs) > 0: attrs[(s, t)] = new_attrs return attrs
def removed_node_attrs(self): """.""" attrs = dict() for node in self.lhs.nodes(): p_nodes = keys_by_value(self.p_lhs, node) new_attrs = {} for p_node in p_nodes: new_attrs = attrs_union(new_attrs, dict_sub( self.lhs.node[node], self.p.node[p_node])) if len(new_attrs) > 0: attrs[node] = new_attrs return attrs
def added_node_attrs(self): """.""" attrs = dict() for node in self.rhs.nodes(): p_nodes = keys_by_value(self.p_rhs, node) # if len(p_nodes) == 0: # attrs[node] = self.rhs.node[node] new_attrs = {} for p_node in p_nodes: new_attrs = attrs_union(new_attrs, dict_sub( self.rhs.node[node], self.p.node[p_node])) if len(new_attrs) > 0: attrs[node] = new_attrs return attrs
def added_edge_attrs(self): """.""" attrs = dict() for s, t in self.rhs.edges(): s_p_nodes = keys_by_value(self.p_rhs, s) t_p_nodes = keys_by_value(self.p_rhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.rhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) return attrs
def removed_node_attrs(self): """Get node attributes removed by the rule. Returns ------- attrs : dict Dictionary where keys are nodes from `lhs` and values are attribute dictionaries to remove. """ attrs = dict() for node in self.lhs.nodes(): p_nodes = keys_by_value(self.p_lhs, node) new_attrs = {} for p_node in p_nodes: new_attrs = attrs_union(new_attrs, dict_sub( self.lhs.node[node], self.p.node[p_node])) if len(new_attrs) > 0: attrs[node] = new_attrs return attrs
def removed_edge_attrs(self): """.""" attrs = dict() for s, t in self.lhs.edges(): s_p_nodes = keys_by_value(self.p_lhs, s) t_p_nodes = keys_by_value(self.p_lhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.lhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) if len(new_attrs) > 0: attrs[(s, t)] = new_attrs return attrs
def get_rule_projections(tx, hierarchy, graph_id, rule, instance, rhs_typing=None): """Execute the query finding rule liftings.""" if rhs_typing is None: rhs_typing = {} projections = {} if rule.is_relaxing(): if len(rule.lhs.nodes()) > 0: lhs_instance = { n: instance[n] for n in rule.lhs.nodes() } lhs_vars = { n: n for n in rule.lhs.nodes()} match_instance_vars = { v: lhs_instance[k] for k, v in lhs_vars.items() } # Match nodes query = "// Match nodes the instance of the rewritten graph \n" query += "MATCH {}".format( ", ".join([ "({}:{} {{id: '{}'}})".format(k, graph_id, v) for k, v in match_instance_vars.items() ]) ) query += "\n\n" carry_vars = list(lhs_vars.values()) for k, v in lhs_vars.items(): query += ( "OPTIONAL MATCH (n)<-[:typing*1..]-({})\n".format(v) + "WITH {} \n".format( ", ".join( carry_vars + ["collect(DISTINCT {{type:'node', origin: {}.id, id: n.id, graph:labels(n)[0], attrs: properties(n)}}) as {}_dict\n".format( v, v)]) ) ) carry_vars.append("{}_dict".format(v)) # Match edges for (u, v) in rule.p.edges(): edge_var = "{}_{}".format(lhs_vars[u], lhs_vars[v]) query += "OPTIONAL MATCH ({}_instance)-[{}:edge]->({}_instance)\n".format( lhs_vars[u], edge_var, lhs_vars[v]) query += "WHERE ({})<-[:typing*1..]-({}) AND ({})<-[:typing*1..]-({})\n".format( "{}_instance".format(lhs_vars[u]), lhs_vars[u], "{}_instance".format(lhs_vars[v]), lhs_vars[v]) query += ( "WITH {} \n".format( ", ".join(carry_vars + [ "collect({{type: 'edge', source: {}.id, target: {}.id, graph:labels({})[0], attrs: properties({})}}) as {}\n".format( "{}_instance".format(lhs_vars[u]), "{}_instance".format(lhs_vars[v]), "{}_instance".format(lhs_vars[u]), edge_var, edge_var) ]) ) ) carry_vars.append(edge_var) query += "RETURN {}".format( ", ".join( ["{}_dict as {}".format(v, v) for v in lhs_vars.values()] + ["{}_{}".format(lhs_vars[u], lhs_vars[v]) for u, v in rule.p.edges()])) result = tx.run(query) record = result.single() l_l_ts = {} l_nodes = {} l_edges = {} for k, v in record.items(): if len(v) > 0: if v[0]["type"] == "node": for el in v: l_node = keys_by_value(instance, el["origin"])[0] if el["graph"] not in l_nodes: l_nodes[el["graph"]] = {} l_l_ts[el["graph"]] = {} if el["id"] not in l_nodes[el["graph"]]: l_nodes[el["graph"]][el["id"]] = {} l_nodes[el["graph"]][el["id"]] = attrs_union( l_nodes[el["graph"]][el["id"]], attrs_intersection( generic.convert_props_to_attrs(el["attrs"]), get_node(rule.lhs, l_node))) l_l_ts[el["graph"]][l_node] = el["id"] else: for el in v: l_sources = keys_by_value(l_l_ts[el["graph"]], el["source"]) l_targets = keys_by_value(l_l_ts[el["graph"]], el["target"]) for l_source in l_sources: for l_target in l_targets: if exists_edge(rule.l, l_source, l_target): if el["graph"] not in l_edges: l_edges[el["graph"]] = {} if (el["source"], el["target"]) not in l_edges[el["graph"]]: l_edges[el["graph"]][(el["source"], el["target"])] = {} l_edges[el["graph"]][(el["source"], el["target"])] =\ attrs_union( l_edges[el["graph"]][(el["source"], el["target"])], attrs_intersection( generic.convert_props_to_attrs(el["attrs"]), get_edge(rule.lhs, l_source, l_target))) for graph, typing in hierarchy.get_descendants(graph_id).items(): if graph in l_nodes: nodes = l_nodes[graph] else: nodes = {} if graph in l_edges: edges = l_edges[graph] else: edges = {} l = nx.DiGraph() add_nodes_from(l, [(k, v) for k, v in nodes.items()]) if graph in l_edges: add_edges_from( l, [(s, t, v) for (s, t), v in edges.items()]) rhs, p_rhs, r_r_t = pushout( rule.p, l, rule.rhs, compose(rule.p_lhs, l_l_ts[graph]), rule.p_rhs) l_t_t = {n: n for n in nodes} # Modify P_T and R_T according to the controlling # relation rhs_typing if graph in rhs_typing.keys(): r_t_factorization = { r_r_t[k]: v for k, v in rhs_typing[graph].items() } added_t_nodes = set() for n in rhs.nodes(): if n in r_t_factorization.keys(): # If corresponding R_T node is specified in # the controlling relation add nodes of T # that type it to P t_nodes = r_t_factorization[n] for t_node in t_nodes: if t_node not in l_t_t.values() and\ t_node not in added_t_nodes: new_p_node = generate_new_id( l.nodes(), t_node) l.add_node(new_p_node) added_t_nodes.add(t_node) p_rhs[new_p_node] = n l_t_t[new_p_node] = t_node else: p_rhs[keys_by_value(l_t_t, t_node)[0]] = n projections[graph] = { "rule": Rule(p=l, rhs=rhs, p_rhs=p_rhs), "instance": l_t_t, "l_l_t": l_l_ts[graph], "p_p_t": {k: l_l_ts[graph][v] for k, v in rule.p_lhs.items()}, "r_r_t": r_r_t } return projections